yt.data_objects.derived_quantities module¶
- class yt.data_objects.derived_quantities.AngularMomentumVector(data_source)[source]¶
Bases:
DerivedQuantity
Calculates the angular momentum vector, using gas (grid-based) and/or particles.
The angular momentum vector is the mass-weighted mean specific angular momentum. Returns a YTArray of the vector.
- Parameters:
use_gas (bool) – Flag to include grid-based gas in the calculation. Gas is ignored if not present. Default: True
use_particles (bool) – Flag to include particles in the calculation. Particles are ignored if not present. Default: True
particle_type (string) – Flag to specify the field type of the particles to use. Useful for particle-based codes where you don’t want to use all of the particles in your calculation. Default: ‘all’
Examples
Find angular momentum vector of galaxy in grid-based isolated galaxy dataset >>> ds = yt.load(“IsolatedGalaxy/galaxy0030/galaxy0030”) … ad = ds.all_data() … print(ad.quantities.angular_momentum_vector()) [-7.50868209e+26 1.06032596e+27 2.19274002e+29] cm**2/s >>> # Find angular momentum vector of gas disk in particle-based dataset >>> ds = yt.load(“FIRE_M12i_ref11/snapshot_600.hdf5”) … _, c = ds.find_max((“gas”, “density”)) … sp = ds.sphere(c, (10, “kpc”)) … search_args = dict(use_gas=False, use_particles=True, particle_type=”PartType0”) … print(sp.quantities.angular_momentum_vector(**search_args)) [4.88104442e+28 7.38463362e+28 6.20030135e+28] cm**2/s
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- class yt.data_objects.derived_quantities.BulkVelocity(data_source)[source]¶
Bases:
DerivedQuantity
Calculates the bulk velocity, using gas and/or particles.
The bulk velocity is the mass-weighted mean velocity.
- Parameters:
use_gas (bool) – Flag to include gas in the calculation. Gas is ignored if not present. Default: True
use_particles (bool) – Flag to include particles in the calculation. Particles are ignored if not present. Default: True
particle_type (string) – Flag to specify the field type of the particles to use. Useful for particle-based codes where you don’t want to use all of the particles in your calculation. Default: ‘all’
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.bulk_velocity())
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- class yt.data_objects.derived_quantities.CenterOfMass(data_source)[source]¶
Bases:
DerivedQuantity
Calculates the center of mass, using gas and/or particles.
The center of mass is the mass-weighted mean position.
- Parameters:
use_gas (bool) – Flag to include gas in the calculation. Gas is ignored if not present. Default: True
use_particles (bool) – Flag to include particles in the calculation. Particles are ignored if not present. Default: False
particle_type (string) – Flag to specify the field type of the particles to use. Useful for particle-based codes where you don’t want to use all of the particles in your calculation. Default: ‘all’
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.center_of_mass())
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- class yt.data_objects.derived_quantities.DerivedQuantity(data_source)[source]¶
Bases:
ParallelAnalysisInterface
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- class yt.data_objects.derived_quantities.DerivedQuantityCollection(data_source, *args, **kwargs)[source]¶
Bases:
object
- class yt.data_objects.derived_quantities.Extrema(data_source)[source]¶
Bases:
DerivedQuantity
Calculates the min and max value of a field or list of fields. Returns a YTArray for each field requested. If one, a single YTArray is returned, if many, a list of YTArrays in order of field list is returned. The first element of each YTArray is the minimum of the field and the second is the maximum of the field.
- Parameters:
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.extrema([("gas", "density"), ("gas", "temperature")]))
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- class yt.data_objects.derived_quantities.MaxLocation(data_source)[source]¶
Bases:
SampleAtMaxFieldValues
Calculates the maximum value plus the x, y, and z position of the maximum.
- Parameters:
field (tuple or string) – The field over which the extrema are to be calculated.
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.max_location(("gas", "density")))
- comm = None¶
- count_values(field, sample_fields)¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- process_chunk(data, field, sample_fields)¶
- reduce_intermediate(values)¶
- class yt.data_objects.derived_quantities.MinLocation(data_source)[source]¶
Bases:
SampleAtMinFieldValues
Calculates the minimum value plus the x, y, and z position of the minimum.
- Parameters:
field (tuple or string) – The field over which the extrema are to be calculated.
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.min_location(("gas", "density")))
- comm = None¶
- count_values(field, sample_fields)¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- process_chunk(data, field, sample_fields)¶
- reduce_intermediate(values)¶
- class yt.data_objects.derived_quantities.SampleAtMaxFieldValues(data_source)[source]¶
Bases:
DerivedQuantity
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- class yt.data_objects.derived_quantities.SampleAtMinFieldValues(data_source)[source]¶
Bases:
SampleAtMaxFieldValues
- comm = None¶
- count_values(field, sample_fields)¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- process_chunk(data, field, sample_fields)¶
- reduce_intermediate(values)¶
- class yt.data_objects.derived_quantities.SpinParameter(data_source)[source]¶
Bases:
DerivedQuantity
Calculates the dimensionless spin parameter.
Given by Equation 3 of Peebles (1971, A&A, 11, 377), the spin parameter is defined as
\[\lambda = (L * |E|^(1/2)) / (G * M^5/2),\]where L is the total angular momentum, E is the total energy (kinetic and potential), G is the gravitational constant, and M is the total mass.
- Parameters:
use_gas (bool) – Flag to include gas in the calculation. Gas is ignored if not present. Default: True
use_particles (bool) – Flag to include particles in the calculation. Particles are ignored if not present. Default: True
particle_type (str) – Particle type to be used for Center of mass calculation when use_particle = True. Default: all
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.spin_parameter())
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- class yt.data_objects.derived_quantities.TotalMass(data_source)[source]¶
Bases:
TotalQuantity
Calculates the total mass of the object. Returns a YTArray where the first element is total gas mass and the second element is total particle mass.
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.total_mass())
- comm = None¶
- count_values(fields)¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- process_chunk(data, fields)¶
- reduce_intermediate(values)¶
- class yt.data_objects.derived_quantities.TotalQuantity(data_source)[source]¶
Bases:
DerivedQuantity
Calculates the sum of the field or fields.
- Parameters:
fields – The field or list of fields to be summed.
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.total_quantity([("gas", "mass")]))
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- class yt.data_objects.derived_quantities.WeightedAverageQuantity(data_source)[source]¶
Bases:
DerivedQuantity
Calculates the weight average of a field or fields.
Returns a YTQuantity for each field requested; if one, it returns a single YTQuantity, if many, it returns a list of YTQuantities in order of the listed fields.
Where f is the field and w is the weight, the weighted average is Sum_i(f_i * w_i) / Sum_i(w_i).
- Parameters:
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print( ... ad.quantities.weighted_average_quantity( ... [("gas", "density"), ("gas", "temperature")], ("gas", "mass") ... ) ... )
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.
- class yt.data_objects.derived_quantities.WeightedStandardDeviation(data_source)[source]¶
Bases:
DerivedQuantity
Calculates the weighted standard deviation and weighted mean for a field or list of fields. Returns a YTArray for each field requested; if one, it returns a single YTArray, if many, it returns a list of YTArrays in order of the listed fields. The first element of each YTArray is the weighted standard deviation, and the second element is the weighted mean.
Where f is the field, w is the weight, and <f_w> is the weighted mean, the weighted standard deviation is sqrt( Sum_i( (f_i - <f_w>)^2 * w_i ) / Sum_i(w_i) ).
- Parameters:
Examples
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print( ... ad.quantities.weighted_standard_deviation( ... [("gas", "density"), ("gas", "temperature")], ("gas", "mass") ... ) ... )
- comm = None¶
- get_dependencies(fields)¶
- num_vals = -1¶
- partition_index_2d(axis)¶
- partition_index_3d(ds, padding=0.0, rank_ratio=1)¶
- partition_index_3d_bisection_list()¶
Returns an array that is used to drive _partition_index_3d_bisection, below.
- partition_region_3d(left_edge, right_edge, padding=0.0, rank_ratio=1)¶
Given a region, it subdivides it into smaller regions for parallel analysis.