Source code for yt.data_objects.derived_quantities

import numpy as np

from yt.funcs import camelcase_to_underscore, iter_fields
from yt.units.yt_array import array_like_field
from yt.utilities.exceptions import YTParticleTypeNotFound
from yt.utilities.object_registries import derived_quantity_registry
from yt.utilities.parallel_tools.parallel_analysis_interface import (
    ParallelAnalysisInterface,
    parallel_objects,
)
from yt.utilities.physical_constants import gravitational_constant_cgs
from yt.utilities.physical_ratios import HUGE


[docs] def get_position_fields(field, data): axis_names = [data.ds.coordinates.axis_name[num] for num in [0, 1, 2]] field = data._determine_fields(field)[0] finfo = data.ds.field_info[field] if finfo.sampling_type == "particle": if finfo.is_alias: ftype = finfo.alias_name[0] else: ftype = finfo.name[0] position_fields = [(ftype, f"particle_position_{d}") for d in axis_names] else: position_fields = [("index", ax_name) for ax_name in axis_names] return position_fields
[docs] class DerivedQuantity(ParallelAnalysisInterface): num_vals = -1 def __init__(self, data_source): self.data_source = data_source def __init_subclass__(cls, *args, **kwargs): super().__init_subclass__(*args, **kwargs) if cls.__name__ != "DerivedQuantity": derived_quantity_registry[cls.__name__] = cls
[docs] def count_values(self, *args, **kwargs): return
def __call__(self, *args, **kwargs): """Calculate results for the derived quantity""" # create the index if it doesn't exist yet self.data_source.ds.index self.count_values(*args, **kwargs) chunks = self.data_source.chunks( [], chunking_style=self.data_source._derived_quantity_chunking ) storage = {} for sto, ds in parallel_objects(chunks, -1, storage=storage): sto.result = self.process_chunk(ds, *args, **kwargs) # Now storage will have everything, and will be done via pickling, so # the units will be preserved. (Credit to Nathan for this # idea/implementation.) values = [[] for i in range(self.num_vals)] for key in sorted(storage): for i in range(self.num_vals): values[i].append(storage[key][i]) # These will be YTArrays values = [self.data_source.ds.arr(values[i]) for i in range(self.num_vals)] values = self.reduce_intermediate(values) return values
[docs] def process_chunk(self, data, *args, **kwargs): raise NotImplementedError
[docs] def reduce_intermediate(self, values): raise NotImplementedError
[docs] class DerivedQuantityCollection: def __new__(cls, data_source, *args, **kwargs): inst = object.__new__(cls) inst.data_source = data_source for f in inst.keys(): setattr(inst, camelcase_to_underscore(f), inst[f]) return inst def __getitem__(self, key): dq = derived_quantity_registry[key] # Instantiate here, so we can pass it the data object # Note that this means we instantiate every time we run help, etc # I have made my peace with this. return dq(self.data_source)
[docs] def keys(self): return derived_quantity_registry.keys()
[docs] class WeightedAverageQuantity(DerivedQuantity): r""" Calculates the weight average of a field or fields. Returns a YTQuantity for each field requested; if one, it returns a single YTQuantity, if many, it returns a list of YTQuantities in order of the listed fields. Where f is the field and w is the weight, the weighted average is Sum_i(f_i \* w_i) / Sum_i(w_i). Parameters ---------- fields : string / tuple, or list of strings / tuples The field or fields of which the average value is to be calculated. weight : string or tuple The weight field. Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print( ... ad.quantities.weighted_average_quantity( ... [("gas", "density"), ("gas", "temperature")], ("gas", "mass") ... ) ... ) """
[docs] def count_values(self, fields, weight): # This is a list now self.num_vals = len(fields) + 1
def __call__(self, fields, weight): fields = list(iter_fields(fields)) rv = super().__call__(fields, weight) if len(rv) == 1: rv = rv[0] return rv
[docs] def process_chunk(self, data, fields, weight): vals = [(data[field] * data[weight]).sum(dtype=np.float64) for field in fields] wv = data[weight].sum(dtype=np.float64) return vals + [wv]
[docs] def reduce_intermediate(self, values): w = values.pop(-1).sum(dtype=np.float64) return [v.sum(dtype=np.float64) / w for v in values]
[docs] class TotalQuantity(DerivedQuantity): r""" Calculates the sum of the field or fields. Parameters ---------- fields The field or list of fields to be summed. Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.total_quantity([("gas", "mass")])) """
[docs] def count_values(self, fields): # This is a list now self.num_vals = len(fields)
def __call__(self, fields): fields = list(iter_fields(fields)) rv = super().__call__(fields) if len(rv) == 1: rv = rv[0] return rv
[docs] def process_chunk(self, data, fields): vals = [data[field].sum(dtype=np.float64) for field in fields] return vals
[docs] def reduce_intermediate(self, values): return [v.sum(dtype=np.float64) for v in values]
[docs] class TotalMass(TotalQuantity): r""" Calculates the total mass of the object. Returns a YTArray where the first element is total gas mass and the second element is total particle mass. Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.total_mass()) """ def __call__(self): self.data_source.ds.index fi = self.data_source.ds.field_info if ("gas", "mass") in fi: gas = super().__call__([("gas", "mass")]) else: gas = self.data_source.ds.quan(0.0, "g") if ("nbody", "particle_mass") in fi: part = super().__call__([("nbody", "particle_mass")]) else: part = self.data_source.ds.quan(0.0, "g") return self.data_source.ds.arr([gas, part])
[docs] class CenterOfMass(DerivedQuantity): r""" Calculates the center of mass, using gas and/or particles. The center of mass is the mass-weighted mean position. Parameters ---------- use_gas : bool Flag to include gas in the calculation. Gas is ignored if not present. Default: True use_particles : bool Flag to include particles in the calculation. Particles are ignored if not present. Default: False particle_type: string Flag to specify the field type of the particles to use. Useful for particle-based codes where you don't want to use all of the particles in your calculation. Default: 'all' Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.center_of_mass()) """
[docs] def count_values(self, use_gas=True, use_particles=False, particle_type="nbody"): finfo = self.data_source.ds.field_info includes_gas = ("gas", "mass") in finfo includes_particles = (particle_type, "particle_mass") in finfo self.use_gas = use_gas & includes_gas self.use_particles = use_particles & includes_particles self.num_vals = 0 if self.use_gas: self.num_vals += 4 if self.use_particles: self.num_vals += 4
[docs] def process_chunk( self, data, use_gas=True, use_particles=False, particle_type="nbody" ): vals = [] if self.use_gas: vals += [ (data["gas", ax] * data["gas", "mass"]).sum(dtype=np.float64) for ax in "xyz" ] vals.append(data["gas", "mass"].sum(dtype=np.float64)) if self.use_particles: vals += [ ( data[particle_type, f"particle_position_{ax}"] * data[particle_type, "particle_mass"] ).sum(dtype=np.float64) for ax in "xyz" ] vals.append(data[particle_type, "particle_mass"].sum(dtype=np.float64)) return vals
[docs] def reduce_intermediate(self, values): if len(values) not in (4, 8): raise RuntimeError x = values.pop(0).sum(dtype=np.float64) y = values.pop(0).sum(dtype=np.float64) z = values.pop(0).sum(dtype=np.float64) w = values.pop(0).sum(dtype=np.float64) if len(values) > 0: # Note that this could be shorter if we pre-initialized our x,y,z,w # values as YTQuantity objects. x += values.pop(0).sum(dtype=np.float64) y += values.pop(0).sum(dtype=np.float64) z += values.pop(0).sum(dtype=np.float64) w += values.pop(0).sum(dtype=np.float64) return self.data_source.ds.arr([v / w for v in [x, y, z]])
[docs] class BulkVelocity(DerivedQuantity): r""" Calculates the bulk velocity, using gas and/or particles. The bulk velocity is the mass-weighted mean velocity. Parameters ---------- use_gas : bool Flag to include gas in the calculation. Gas is ignored if not present. Default: True use_particles : bool Flag to include particles in the calculation. Particles are ignored if not present. Default: True particle_type: string Flag to specify the field type of the particles to use. Useful for particle-based codes where you don't want to use all of the particles in your calculation. Default: 'all' Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.bulk_velocity()) """
[docs] def count_values(self, use_gas=True, use_particles=False, particle_type="nbody"): if use_particles and particle_type not in self.data_source.ds.particle_types: raise YTParticleTypeNotFound(particle_type, self.data_source.ds) # This is a list now self.num_vals = 0 if use_gas: self.num_vals += 4 if use_particles and "nbody" in self.data_source.ds.particle_types: self.num_vals += 4
[docs] def process_chunk( self, data, use_gas=True, use_particles=False, particle_type="nbody" ): vals = [] if use_gas: vals += [ (data["gas", f"velocity_{ax}"] * data["gas", "mass"]).sum( dtype=np.float64 ) for ax in "xyz" ] vals.append(data["gas", "mass"].sum(dtype=np.float64)) if use_particles and "nbody" in data.ds.particle_types: vals += [ ( data[particle_type, f"particle_velocity_{ax}"] * data[particle_type, "particle_mass"] ).sum(dtype=np.float64) for ax in "xyz" ] vals.append(data[particle_type, "particle_mass"].sum(dtype=np.float64)) return vals
[docs] def reduce_intermediate(self, values): if len(values) not in (4, 8): raise RuntimeError x = values.pop(0).sum(dtype=np.float64) y = values.pop(0).sum(dtype=np.float64) z = values.pop(0).sum(dtype=np.float64) w = values.pop(0).sum(dtype=np.float64) if len(values) > 0: # Note that this could be shorter if we pre-initialized our x,y,z,w # values as YTQuantity objects. x += values.pop(0).sum(dtype=np.float64) y += values.pop(0).sum(dtype=np.float64) z += values.pop(0).sum(dtype=np.float64) w += values.pop(0).sum(dtype=np.float64) return self.data_source.ds.arr([v / w for v in [x, y, z]])
[docs] class WeightedStandardDeviation(DerivedQuantity): r""" Calculates the weighted standard deviation and weighted mean for a field or list of fields. Returns a YTArray for each field requested; if one, it returns a single YTArray, if many, it returns a list of YTArrays in order of the listed fields. The first element of each YTArray is the weighted standard deviation, and the second element is the weighted mean. Where f is the field, w is the weight, and <f_w> is the weighted mean, the weighted standard deviation is sqrt( Sum_i( (f_i - <f_w>)^2 \* w_i ) / Sum_i(w_i) ). Parameters ---------- fields : string / tuple, or list of strings / tuples The field or fields of which the average value is to be calculated. weight : string or tuple The weight field. Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print( ... ad.quantities.weighted_standard_deviation( ... [("gas", "density"), ("gas", "temperature")], ("gas", "mass") ... ) ... ) """
[docs] def count_values(self, fields, weight): # This is a list now self.num_vals = 2 * len(fields) + 1
def __call__(self, fields, weight): fields = list(iter_fields(fields)) units = [self.data_source.ds._get_field_info(field).units for field in fields] rv = super().__call__(fields, weight) rv = [self.data_source.ds.arr(v, u) for v, u in zip(rv, units, strict=True)] if len(rv) == 1: rv = rv[0] return rv
[docs] def process_chunk(self, data, fields, weight): my_weight = data[weight].d.sum(dtype=np.float64) if my_weight == 0: return [0.0 for field in fields] + [0.0 for field in fields] + [0.0] my_means = [ (data[field].d * data[weight].d).sum(dtype=np.float64) / my_weight for field in fields ] my_var2s = [ (data[weight].d * (data[field].d - my_mean) ** 2).sum(dtype=np.float64) / my_weight for field, my_mean in zip(fields, my_means, strict=True) ] return my_means + my_var2s + [my_weight]
[docs] def reduce_intermediate(self, values): my_weight = values.pop(-1) all_weight = my_weight.sum(dtype=np.float64) rvals = [] for i in range(int(len(values) / 2)): my_mean = values[i] my_var2 = values[i + int(len(values) / 2)] all_mean = (my_weight * my_mean).sum(dtype=np.float64) / all_weight ret = [ ( np.sqrt( (my_weight * (my_var2 + (my_mean - all_mean) ** 2)).sum( dtype=np.float64 ) / all_weight ) ), all_mean, ] rvals.append(np.array(ret)) return rvals
[docs] class AngularMomentumVector(DerivedQuantity): r""" Calculates the angular momentum vector, using gas (grid-based) and/or particles. The angular momentum vector is the mass-weighted mean specific angular momentum. Returns a YTArray of the vector. Parameters ---------- use_gas : bool Flag to include grid-based gas in the calculation. Gas is ignored if not present. Default: True use_particles : bool Flag to include particles in the calculation. Particles are ignored if not present. Default: True particle_type: string Flag to specify the field type of the particles to use. Useful for particle-based codes where you don't want to use all of the particles in your calculation. Default: 'all' Examples -------- Find angular momentum vector of galaxy in grid-based isolated galaxy dataset >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") ... ad = ds.all_data() ... print(ad.quantities.angular_momentum_vector()) [-7.50868209e+26 1.06032596e+27 2.19274002e+29] cm**2/s >>> # Find angular momentum vector of gas disk in particle-based dataset >>> ds = yt.load("FIRE_M12i_ref11/snapshot_600.hdf5") ... _, c = ds.find_max(("gas", "density")) ... sp = ds.sphere(c, (10, "kpc")) ... search_args = dict(use_gas=False, use_particles=True, particle_type="PartType0") ... print(sp.quantities.angular_momentum_vector(**search_args)) [4.88104442e+28 7.38463362e+28 6.20030135e+28] cm**2/s """
[docs] def count_values(self, use_gas=True, use_particles=True, particle_type="all"): if use_particles and particle_type not in self.data_source.ds.particle_types: raise YTParticleTypeNotFound(particle_type, self.data_source.ds) num_vals = 0 # create the index if it doesn't exist yet self.data_source.ds.index self.particle_type = particle_type self.use_gas = use_gas & (("gas", "mass") in self.data_source.ds.field_info) self.use_particles = use_particles & ( (self.particle_type, "particle_mass") in self.data_source.ds.field_info ) if self.use_gas: num_vals += 4 if self.use_particles: num_vals += 4 self.num_vals = num_vals
[docs] def process_chunk( self, data, use_gas=True, use_particles=False, particle_type="all" ): rvals = [] if self.use_gas: rvals.extend( [ ( data["gas", f"specific_angular_momentum_{axis}"] * data["gas", "mass"] ).sum(dtype=np.float64) for axis in "xyz" ] ) rvals.append(data["gas", "mass"].sum(dtype=np.float64)) if self.use_particles: rvals.extend( [ ( data[ self.particle_type, f"particle_specific_angular_momentum_{axis}", ] * data[self.particle_type, "particle_mass"] ).sum(dtype=np.float64) for axis in "xyz" ] ) rvals.append( data[self.particle_type, "particle_mass"].sum(dtype=np.float64) ) return rvals
[docs] def reduce_intermediate(self, values): jx = values.pop(0).sum(dtype=np.float64) jy = values.pop(0).sum(dtype=np.float64) jz = values.pop(0).sum(dtype=np.float64) m = values.pop(0).sum(dtype=np.float64) if values: jx += values.pop(0).sum(dtype=np.float64) jy += values.pop(0).sum(dtype=np.float64) jz += values.pop(0).sum(dtype=np.float64) m += values.pop(0).sum(dtype=np.float64) return self.data_source.ds.arr([jx / m, jy / m, jz / m])
[docs] class Extrema(DerivedQuantity): r""" Calculates the min and max value of a field or list of fields. Returns a YTArray for each field requested. If one, a single YTArray is returned, if many, a list of YTArrays in order of field list is returned. The first element of each YTArray is the minimum of the field and the second is the maximum of the field. Parameters ---------- fields The field or list of fields over which the extrema are to be calculated. non_zero : bool If True, only positive values are considered in the calculation. Default: False check_finite : bool If True, non-finite values will be explicitly excluded. Default: False Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.extrema([("gas", "density"), ("gas", "temperature")])) """
[docs] def count_values(self, fields, non_zero, *, check_finite=False): self.num_vals = len(fields) * 2
def __call__(self, fields, non_zero=False, *, check_finite=False): fields = list(iter_fields(fields)) rv = super().__call__(fields, non_zero, check_finite=check_finite) if len(rv) == 1: rv = rv[0] return rv
[docs] def process_chunk(self, data, fields, non_zero, *, check_finite=False): vals = [] for field in fields: field = data._determine_fields(field)[0] fd = data[field] if non_zero: fd = fd[fd > 0.0] if check_finite: fd = fd[np.isfinite(fd)] if fd.size > 0: vals += [fd.min(), fd.max()] else: vals += [ array_like_field(data, HUGE, field), array_like_field(data, -HUGE, field), ] return vals
[docs] def reduce_intermediate(self, values): # The values get turned into arrays here. return [ self.data_source.ds.arr([mis.min(), mas.max()]) for mis, mas in zip(values[::2], values[1::2], strict=True) ]
[docs] class SampleAtMaxFieldValues(DerivedQuantity): _sign = -1 r""" Calculates the maximum value and returns whichever fields are asked to be sampled. Parameters ---------- field : tuple or string The field over which the extrema are to be calculated. sample_fields : list of fields The fields to sample and return at the minimum value. Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.sample_at_max_field_values(("gas", "density"), ... [("gas", "temperature"), ("gas", "velocity_magnitude")])) """
[docs] def count_values(self, field, sample_fields): # field itself, then index, then the number of sample fields self.num_vals = 1 + len(sample_fields)
def __call__(self, field, sample_fields): rv = super().__call__(field, sample_fields) if len(rv) == 1: rv = rv[0] return rv
[docs] def process_chunk(self, data, field, sample_fields): field = data._determine_fields(field)[0] ma = array_like_field(data, self._sign * HUGE, field) vals = [array_like_field(data, -1, sf) for sf in sample_fields] maxi = -1 if data[field].size > 0: maxi = self._func(data[field]) ma = data[field][maxi] vals = [data[sf][maxi] for sf in sample_fields] return (ma,) + tuple(vals)
[docs] def reduce_intermediate(self, values): i = self._func(values[0]) # ma is values[0] return [val[i] for val in values]
def _func(self, arr): return np.argmax(arr)
[docs] class MaxLocation(SampleAtMaxFieldValues): r""" Calculates the maximum value plus the x, y, and z position of the maximum. Parameters ---------- field : tuple or string The field over which the extrema are to be calculated. Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.max_location(("gas", "density"))) """ def __call__(self, field): # Make sure we have an index self.data_source.index sample_fields = get_position_fields(field, self.data_source) rv = super().__call__(field, sample_fields) if len(rv) == 1: rv = rv[0] return rv
[docs] class SampleAtMinFieldValues(SampleAtMaxFieldValues): _sign = 1 r""" Calculates the minimum value and returns whichever fields are asked to be sampled. Parameters ---------- field : tuple or string The field over which the extrema are to be calculated. sample_fields : list of fields The fields to sample and return at the minimum value. Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.sample_at_min_field_values(("gas", "density"), ... [("gas", "temperature"), ("gas", "velocity_magnitude")])) """ def _func(self, arr): return np.argmin(arr)
[docs] class MinLocation(SampleAtMinFieldValues): r""" Calculates the minimum value plus the x, y, and z position of the minimum. Parameters ---------- field : tuple or string The field over which the extrema are to be calculated. Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.min_location(("gas", "density"))) """ def __call__(self, field): # Make sure we have an index self.data_source.index sample_fields = get_position_fields(field, self.data_source) rv = super().__call__(field, sample_fields) if len(rv) == 1: rv = rv[0] return rv
[docs] class SpinParameter(DerivedQuantity): r""" Calculates the dimensionless spin parameter. Given by Equation 3 of Peebles (1971, A&A, 11, 377), the spin parameter is defined as .. math:: \lambda = (L * |E|^(1/2)) / (G * M^5/2), where L is the total angular momentum, E is the total energy (kinetic and potential), G is the gravitational constant, and M is the total mass. Parameters ---------- use_gas : bool Flag to include gas in the calculation. Gas is ignored if not present. Default: True use_particles : bool Flag to include particles in the calculation. Particles are ignored if not present. Default: True particle_type : str Particle type to be used for Center of mass calculation when use_particle = True. Default: all Examples -------- >>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> ad = ds.all_data() >>> print(ad.quantities.spin_parameter()) """
[docs] def count_values(self, **kwargs): self.num_vals = 3
[docs] def process_chunk( self, data, use_gas=True, use_particles=True, particle_type="nbody" ): if use_particles and particle_type not in self.data_source.ds.particle_types: raise YTParticleTypeNotFound(particle_type, self.data_source.ds) use_gas &= ("gas", "mass") in self.data_source.ds.field_info use_particles &= ( particle_type, "particle_mass", ) in self.data_source.ds.field_info e = data.ds.quan(0.0, "erg") j = data.ds.quan(0.0, "g*cm**2/s") m = data.ds.quan(0.0, "g") if use_gas: e += (data["gas", "kinetic_energy_density"] * data["gas", "volume"]).sum( dtype=np.float64 ) j += data["gas", "angular_momentum_magnitude"].sum(dtype=np.float64) m += data["gas", "mass"].sum(dtype=np.float64) if use_particles: e += ( data[particle_type, "particle_velocity_magnitude"] ** 2 * data[particle_type, "particle_mass"] ).sum(dtype=np.float64) j += data[particle_type, "particle_angular_momentum_magnitude"].sum( dtype=np.float64 ) m += data[particle_type, "particle_mass"].sum(dtype=np.float64) return (e, j, m)
[docs] def reduce_intermediate(self, values): e = values.pop(0).sum(dtype=np.float64) j = values.pop(0).sum(dtype=np.float64) m = values.pop(0).sum(dtype=np.float64) return j * np.sqrt(np.abs(e)) / m**2.5 / gravitational_constant_cgs