yt.frontends.eagle.fields module

EAGLE fields

class yt.frontends.eagle.fields.EagleNetworkFieldInfo(*args, **kwargs)[source]

Bases: yt.frontends.owls.fields.OWLSFieldInfo

add_field(name, sampling_type, function=None, **kwargs)

Add a new field, along with supplemental metadata, to the list of available fields. This respects a number of arguments, all of which are passed on to the constructor for DerivedField.

  • name (str) – is the name of the field.
  • function (callable) – A function handle that defines the field. Should accept arguments (field, data)
  • units (str) – A plain text string encoding the unit. Powers must be in python syntax (** instead of ^). If set to “auto” the units will be inferred from the return value of the field function.
  • take_log (bool) – Describes whether the field should be logged
  • validators (list) – A list of FieldValidator objects
  • particle_type (bool) – Is this a particle (1D) field?
  • vector_field (bool) – Describes the dimensionality of the field. Currently unused.
  • display_name (str) – A name used in the plots
add_output_field(name, sampling_type, **kwargs)
alias(alias_name, original_name, units=None)
clear() → None. Remove all items from D.
copy() → a shallow copy of D
create_with_fallback(fallback, name='')
extra_union_fields = ()
fallback = None

Returns a new dict with keys from iterable and values equal to value.

get(k[, d]) → D[k] if k in D, else d. d defaults to None.
items() → a set-like object providing a view on D's items
known_other_fields = ()
known_particle_fields = (('Mass', ('code_mass', ['particle_mass'], None)), ('Masses', ('code_mass', ['particle_mass'], None)), ('Coordinates', ('code_length', ['particle_position'], None)), ('Velocity', ('code_velocity', ['particle_velocity'], None)), ('Velocities', ('code_velocity', ['particle_velocity'], None)), ('ParticleIDs', ('', ['particle_index'], None)), ('InternalEnergy', ('code_specific_energy', ['thermal_energy'], None)), ('SmoothingLength', ('code_length', ['smoothing_length'], None)), ('Density', ('code_mass / code_length**3', ['density'], None)), ('MaximumTemperature', ('K', [], None)), ('Temperature', ('K', ['temperature'], None)), ('Epsilon', ('code_length', [], None)), ('Metals', ('code_metallicity', ['metallicity'], None)), ('Metallicity', ('code_metallicity', ['metallicity'], None)), ('Phi', ('code_length', [], None)), ('StarFormationRate', ('Msun / yr', [], None)), ('FormationTime', ('code_time', ['creation_time'], None)), ('Metallicity_00', ('', ['metallicity'], None)))
load_plugin(plugin_name, ftype='gas', skip_check=False)
pop(k[, d]) → v, remove specified key and return the corresponding value.

If key is not found, d is returned if given, otherwise KeyError is raised

popitem() → (k, v), remove and return some (key, value) pair as a

2-tuple; but raise KeyError if D is empty.

setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

Sets up particle fields for gas ion densities.


additional particle fields derived from those in snapshot. we also need to add the smoothed fields here b/c setup_fluid_fields is called before setup_particle_fields.

setup_smoothed_fields(ptype, num_neighbors=64, ftype='gas')
update([E, ]**F) → None. Update D from dict/iterable E and F.

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values() → an object providing a view on D's values