yt.visualization.particle_plots module

class yt.visualization.particle_plots.AxisAlignedParticleProjectionPlot(ds, normal=None, *args, axis=None, **kwargs)[source]

Bases: ParticleProjectionPlot, PWViewerMPL

annotate_arrow(pos, *, length=0.03, width=0.0001, head_width=0.01, head_length=0.01, starting_pos=None, coord_system='data', plot_args: dict[str, Any] | None = None, **kwargs)

Overplot arrow(s) pointing at position(s) for highlighting specific features. By default, arrow points from lower left to the designated position “pos” with arrow length “length”. Alternatively, if “starting_pos” is set, arrow will stretch from “starting_pos” to “pos” and “length” will be disregarded.

“coord_system” keyword refers to positions set in “pos” arg and “starting_pos” keyword, which by default are in data coordinates.

“length”, “width”, “head_length”, and “head_width” keywords for the arrow are all in axis units, ie relative to the size of the plot axes as 1, even if the position of the arrow is set relative to another coordinate system.

Parameters:
  • pos (array-like) – These are the coordinates where the marker(s) will be overplotted Either as [x,y,z] or as [[x1,x2,…],[y1,y2,…],[z1,z2,…]]

  • length (float, optional) – The length, in axis units, of the arrow. Default: 0.03

  • width (float, optional) – The width, in axis units, of the tail line of the arrow. Default: 0.003

  • head_length (float, optional) – The length, in axis units, of the head of the arrow. If set to None, use 1.5*head_width Default: None

  • head_width (float, optional) – The width, in axis units, of the head of the arrow. Default: 0.02

  • starting_pos (2- or 3-element tuple, list, or array, optional) – These are the coordinates from which the arrow starts towards its point. Not compatible with ‘length’ kwarg.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • plot_args (dictionary, optional) – This dictionary is passed to the MPL arrow function for generating the arrow. By default, it is: {‘color’:’white’}

Examples

>>> # Overplot an arrow pointing to feature at data coord: (0.2, 0.3, 0.4)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_arrow([0.2, 0.3, 0.4])
>>> s.save()
>>> # Overplot a red arrow with longer length pointing to plot coordinate
>>> # (0.1, -0.1)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_arrow(
...     [0.1, -0.1], length=0.06, coord_system="plot", color="red"
... )
>>> s.save()
annotate_cell_edges(line_width=0.002, alpha=1.0, color='black')

Annotate cell edges. This is done through a second call to pixelize, where the distance from a pixel to a cell boundary in pixels is compared against the line_width argument. The secondary image is colored as color and overlaid with the alpha value.

Parameters:
  • line_width (float) – The width of the cell edge lines in normalized units relative to the size of the longest axis. Default is 1% of the size of the smallest axis.

  • alpha (float) – When the second image is overlaid, it will have this level of alpha transparency. Default is 1.0 (fully-opaque).

  • color (tuple of three floats or matplotlib color name) – This is the color of the cell edge values. It defaults to black.

Examples

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_cell_edges()
>>> s.save()
annotate_clumps(clumps, *, plot_args=None, **kwargs)

Take a list of clumps and plot them as a set of contours.

annotate_contour(field: tuple[str, str] | str, levels: int = 5, *, factor: tuple[int, int] | int = 4, clim: tuple[float, float] | None = None, label: bool = False, take_log: bool | None = None, data_source: YTDataContainer | None = None, plot_args: dict[str, Any] | None = None, text_args: dict[str, Any] | None = None, ncont: int | None = None) None

Add contours in field to the plot. levels governs the number of contours generated, factor governs the number of points used in the interpolation, take_log governs how it is contoured and clim gives the (lower, upper) limits for contouring. An alternate data source can be specified with data_source, but by default the plot’s data source will be queried.

annotate_cquiver(field_x, field_y, field_c=None, *, factor: tuple[int, int] | int = 16, scale=None, scale_units=None, normalize=False, plot_args=None, **kwargs)

Get a quiver plot on top of a cutting plane, using field_x and field_y, skipping every factor datapoint in the discretization. scale is the data units per arrow length unit using scale_units and plot_args allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if normalize is True, the fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength.

annotate_grids(alpha=0.7, min_pix=1, min_pix_ids=20, draw_ids=False, id_loc=None, periodic=True, min_level=None, max_level=None, cmap='B-W LINEAR_r', edgecolors=None, linewidth=1.0)

Draws grids on an existing PlotWindow object. Adds grid boundaries to a plot, optionally with alpha-blending. By default, colors different levels of grids with different colors going from white to black, but you can change to any arbitrary colormap with cmap keyword, to all black grid edges for all levels with cmap=None and edgecolors=None, or to an arbitrary single color for grid edges with edgecolors=’YourChosenColor’ defined in any of the standard ways (e.g., edgecolors=’white’, edgecolors=’r’, edgecolors=’#00FFFF’, or edgecolor=’0.3’, where the last is a float in 0-1 scale indicating gray). Note that setting edgecolors overrides cmap if you have both set to non-None values. Cutoff for display is at min_pix wide. draw_ids puts the grid id a the corner of the grid (but its not so great in projections…). id_loc determines which corner holds the grid id. One can set min and maximum level of grids to display, and can change the linewidth of the displayed grids.

annotate_line(p1, p2, *, coord_system='data', plot_args: dict[str, Any] | None = None, **kwargs)

Overplot a line with endpoints at p1 and p2. p1 and p2 should be 2D or 3D coordinates consistent with the coordinate system denoted in the “coord_system” keyword.

Parameters:
  • p1 (2- or 3-element tuples, lists, or arrays) – These are the coordinates of the endpoints of the line.

  • p2 (2- or 3-element tuples, lists, or arrays) – These are the coordinates of the endpoints of the line.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates p1 and p2. Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • plot_args (dictionary, optional) – This dictionary is passed to the MPL plot function for generating the line. By default, it is: {‘color’:’white’, ‘linewidth’:2}

Examples

>>> # Overplot a diagonal white line from the lower left corner to upper
>>> # right corner
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_line([0, 0], [1, 1], coord_system="axis")
>>> s.save()
>>> # Overplot a red dashed line from data coordinate (0.1, 0.2, 0.3) to
>>> # (0.5, 0.6, 0.7)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_line(
...     [0.1, 0.2, 0.3],
...     [0.5, 0.6, 0.7],
...     coord_system="data",
...     color="red",
...     linestyles="--",
... )
>>> s.save()
annotate_line_integral_convolution(field_x, field_y, texture=None, kernellen=50.0, lim=(0.5, 0.6), cmap='binary', alpha=0.8, const_alpha=False)

Add the line integral convolution to the plot for vector fields visualization. Two component of vector fields needed to be provided (i.e., velocity_x and velocity_y, magnetic_field_x and magnetic_field_y).

Parameters:
  • field_x (string) – The names of two components of vector field which will be visualized

  • field_y (string) – The names of two components of vector field which will be visualized

  • texture (2-d array with the same shape of image, optional) – Texture will be convolved when computing line integral convolution. A white noise background will be used as default.

  • kernellen (float, optional) – The lens of kernel for convolution, which is the length over which the convolution will be performed. For longer kernellen, longer streamline structure will appear.

  • lim (2-element tuple, list, or array, optional) – The value of line integral convolution will be clipped to the range of lim, which applies upper and lower bounds to the values of line integral convolution and enhance the visibility of plots. Each element should be in the range of [0,1].

  • cmap (string, optional) – The name of colormap for line integral convolution plot.

  • alpha (float, optional) – The alpha value for line integral convolution plot.

  • const_alpha (boolean, optional) – If set to False (by default), alpha will be weighted spatially by the values of line integral convolution; otherwise a constant value of the given alpha is used.

Example

>>> import yt
>>> ds = yt.load("Enzo_64/DD0020/data0020")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_line_integral_convolution(
...     "velocity_x", "velocity_y", lim=(0.5, 0.65)
... )
annotate_magnetic_field(factor: tuple[int, int] | int = 16, *, scale=None, scale_units=None, normalize=False, plot_args=None, **kwargs)

Adds a ‘quiver’ plot of magnetic field to the plot, skipping all but every factor datapoint. scale is the data units per arrow length unit using scale_units and plot_args allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if normalize is True, the magnetic fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength.

annotate_marker(pos, marker='x', *, coord_system='data', plot_args=None, **kwargs)

Overplot marker(s) at a position(s) for highlighting specific features.

Parameters:
  • pos (array-like) – These are the coordinates where the marker(s) will be overplotted Either as [x,y,z] or as [[x1,x2,…],[y1,y2,…],[z1,z2,…]]

  • marker (string, optional) – The shape of the marker to be passed to the MPL scatter function. By default, it is ‘x’, but other acceptable values are: ‘.’, ‘o’, ‘v’, ‘^’, ‘s’, ‘p’ ‘*’, etc. See matplotlib.markers for more information.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • plot_args (dictionary, optional) – This dictionary is passed to the MPL scatter function for generating the marker. By default, it is: {‘color’:’white’, ‘s’:50}

Examples

>>> # Overplot a white X on a feature at data location (0.5, 0.5, 0.5)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_marker([0.4, 0.5, 0.6])
>>> s.save()
>>> # Overplot a big yellow circle at axis location (0.1, 0.2)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_marker(
...     [0.1, 0.2],
...     marker="o",
...     coord_system="axis",
...     color="yellow",
...     s=200,
... )
>>> s.save()
annotate_mesh_lines(*, plot_args=None, **kwargs)

Adds mesh lines to the plot. Only works for unstructured or semi-structured mesh data. For structured grid data, see GridBoundaryCallback or CellEdgesCallback.

Parameters:

plot_args (dict, optional) – A dictionary of arguments that will be passed to matplotlib.

Example

>>> import yt
>>> ds = yt.load("MOOSE_sample_data/out.e-s010")
>>> sl = yt.SlicePlot(ds, "z", ("connect2", "convected"))
>>> sl.annotate_mesh_lines(color="black")
annotate_particles(width, p_size=1.0, col='k', marker='o', stride=1, ptype='all', alpha=1.0, data_source=None)

Adds particle positions, based on a thick slab along axis with a width along the line of sight. p_size controls the number of pixels per particle, and col governs the color. ptype will restrict plotted particles to only those that are of a given type. alpha determines the opacity of the marker symbol used in the scatter. An alternate data source can be specified with data_source, but by default the plot’s data source will be queried.

annotate_quiver(field_x, field_y, field_c=None, *, factor: tuple[int, int] | int = 16, scale=None, scale_units=None, normalize=False, bv_x=0, bv_y=0, plot_args=None, **kwargs)

Adds a ‘quiver’ plot to any plot, using the field_x and field_y from the associated data, skipping every factor pixels. field_c is an optional field name used for color. scale is the data units per arrow length unit using scale_units and plot_args allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if normalize is True, the fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength.

annotate_ray(ray, *, arrow=False, plot_args=None, **kwargs)

Adds a line representing the projected path of a ray across the plot. The ray can be either a YTOrthoRay, YTRay, or a LightRay object. annotate_ray() will properly account for periodic rays across the volume. If arrow is set to True, uses the MPL.pyplot.arrow function, otherwise uses the MPL.pyplot.plot function to plot a normal line. Adjust plot_args accordingly.

Parameters:
  • ray (YTOrthoRay, YTRay, or LightRay) – Ray is the object that we want to include. We overplot the projected trajectory of the ray. If the object is a trident.LightRay object, it will only plot the segment of the LightRay that intersects the dataset currently displayed.

  • arrow (boolean, optional) – Whether or not to place an arrowhead on the front of the ray to denote direction Default: False

  • plot_args (dictionary, optional) – A dictionary of any arbitrary parameters to be passed to the Matplotlib line object. Defaults: {‘color’:’white’, ‘linewidth’:2}.

Examples

>>> # Overplot a ray and an ortho_ray object on a projection
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> oray = ds.ortho_ray(1, (0.3, 0.4))  # orthoray down the y axis
>>> ray = ds.ray((0.1, 0.2, 0.3), (0.6, 0.7, 0.8))  # arbitrary ray
>>> p = yt.ProjectionPlot(ds, "z", "density")
>>> p.annotate_ray(oray)
>>> p.annotate_ray(ray)
>>> p.save()
>>> # Overplot a LightRay object on a projection
>>> import yt
>>> from trident import LightRay
>>> ds = yt.load("enzo_cosmology_plus/RD0004/RD0004")
>>> lr = LightRay(
...     "enzo_cosmology_plus/AMRCosmology.enzo", "Enzo", 0.0, 0.1, time_data=False
... )
>>> lray = lr.make_light_ray(seed=1)
>>> p = yt.ProjectionPlot(ds, "z", "density")
>>> p.annotate_ray(lr)
>>> p.save()
annotate_scale(*, corner='lower_right', coeff=None, unit=None, pos=None, max_frac=0.16, min_frac=0.015, coord_system='axis', text_args=None, size_bar_args=None, draw_inset_box=False, inset_box_args=None, scale_text_format='{scale} {units}')

Annotates the scale of the plot at a specified location in the image (either in a preset corner, or by specifying (x,y) image coordinates with the pos argument. Coeff and units (e.g. 1 Mpc or 100 kpc) refer to the distance scale you desire to show on the plot. If no coeff and units are specified, an appropriate pair will be determined such that your scale bar is never smaller than min_frac or greater than max_frac of your plottable axis length. Additional customization of the scale bar is possible by adjusting the text_args and size_bar_args dictionaries. The text_args dictionary accepts matplotlib’s font_properties arguments to override the default font_properties for the current plot. The size_bar_args dictionary accepts keyword arguments for the AnchoredSizeBar class in matplotlib’s axes_grid toolkit.

Parameters:
  • corner (string, optional) – Corner sets up one of 4 predeterimined locations for the scale bar to be displayed in the image: ‘upper_left’, ‘upper_right’, ‘lower_left’, ‘lower_right’ (also allows None). This value will be overridden by the optional ‘pos’ keyword.

  • coeff (float, optional) – The coefficient of the unit defining the distance scale (e.g. 10 kpc or 100 Mpc) for overplotting. If set to None along with unit keyword, coeff will be automatically determined to be a power of 10 relative to the best-fit unit.

  • unit (string, optional) – unit must be a valid yt distance unit (e.g. ‘m’, ‘km’, ‘AU’, ‘pc’, ‘kpc’, etc.) or set to None. If set to None, will be automatically determined to be the best-fit to the data.

  • pos (2- or 3-element tuples, lists, or arrays, optional) – The image location of the scale bar in the plot coordinate system. Setting pos overrides the corner parameter.

  • min_frac (float, optional) – The minimum/maximum fraction of the axis width for the scale bar to extend. A value of 1 would allow the scale bar to extend across the entire axis width. Only used for automatically calculating best-fit coeff and unit when neither is specified, otherwise disregarded.

  • max_frac (float, optional) – The minimum/maximum fraction of the axis width for the scale bar to extend. A value of 1 would allow the scale bar to extend across the entire axis width. Only used for automatically calculating best-fit coeff and unit when neither is specified, otherwise disregarded.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    • ”data”: 3D dataset coordinates

    • ”plot”: 2D coordinates defined by the actual plot limits

    • ”axis”: MPL axis coordinates: (0,0) is lower left; (1,1) is upper right

    • ”figure”: MPL figure coordinates: (0,0) is lower left, (1,1) is upper right

  • text_args (dictionary, optional) – A dictionary of parameters to used to update the font_properties for the text in this callback. For any property not set, it will use the defaults of the plot. Thus one can modify the text size with text_args={'size':24}

  • size_bar_args (dictionary, optional) – A dictionary of parameters to be passed to the Matplotlib AnchoredSizeBar initializer. Defaults: {'pad': 0.25, 'sep': 5, 'borderpad': 1, 'color': 'w'}

  • draw_inset_box (boolean, optional) – Whether or not an inset box should be included around the scale bar.

  • inset_box_args (dictionary, optional) – A dictionary of keyword arguments to be passed to the matplotlib Patch object that represents the inset box. Defaults: {'facecolor': 'black', 'linewidth': 3, 'edgecolor': 'white', 'alpha': 0.5, 'boxstyle': 'square'}

  • scale_text_format (string, optional) – This specifies the format of the scalebar value assuming “scale” is the numerical value and “unit” is units of the scale (e.g. ‘cm’, ‘kpc’, etc.) The scale can be specified to arbitrary precision according to printf formatting codes. The format string must only specify “scale” and “units”. Example: “Length = {scale:.2f} {units}”. Default: “{scale} {units}”

Example

>>> import yt
>>> ds = yt.load("Enzo_64/DD0020/data0020")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_scale()
annotate_sphere(center, radius, *, coord_system='data', text=None, circle_args=None, text_args=None)

Overplot a circle with designated center and radius with optional text.

Parameters:
  • center (2- or 3-element tuple, list, or array) – These are the coordinates where the circle will be overplotted

  • radius (YTArray, float, or (1, ('kpc')) style tuple) – The radius of the circle in code coordinates

  • circle_args (dict, optional) – This dictionary is passed to the MPL circle object. By default, {‘color’:’white’}

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • text (string, optional) – Optional text to include next to the circle.

  • text_args (dictionary, optional) – This dictionary is passed to the MPL text function. By default, it is: {‘color’:’white’}

Examples

>>> # Overplot a white circle of radius 100 kpc over the central galaxy
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_sphere([0.5, 0.5, 0.5], radius=(100, "kpc"))
>>> s.save()
annotate_streamlines(field_x: tuple[str, str] | str, field_y: tuple[str, str] | str, *, linewidth: float | tuple[str, str] | str = 1.0, linewidth_upscaling: float = 1.0, color: Any | tuple[str, str] | None = None, color_threshold: float | unyt_quantity = -inf, factor: tuple[int, int] | int = 16, field_color=None, display_threshold=None, plot_args=None, **kwargs)

Plot streamlines using matplotlib.axes.Axes.streamplot

Parameters:
  • field_x (field key) – The “velocity” analoguous field along the horizontal direction.

  • field_y (field key) – The “velocity” analoguous field along the vertical direction.

  • linewidth (float, or field key (default: 1.0)) – A constant scalar will be passed directly to matplotlib.axes.Axes.streamplot A field key will be first interpreted by yt and produce the adequate 2D array. Data fields are normalized by their maximum value, so the maximal linewidth is 1 by default. See linewidth_upscaling for fine tuning. Note that the absolute value is taken in all cases.

  • linewidth_upscaling (float (default: 1.0)) – A constant multiplicative factor applied to linewidth. Final linewidth is obtained as: linewidth_upscaling * abs(linewidth) / max(abs(linewidth))

  • color (a color identifier, or a field key (default: matplotlib.rcParams['line.color'])) – A constant color identifier will be passed directly to matplotlib.axes.Axes.streamplot A field key will be first interpreted by yt and produce the adequate 2D array. See https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.streamplot.html for how to customize color mapping using cmap and norm arguments.

  • color_threshold (float or unyt_quantity (default: -inf)) – Regions where the field used for color is lower than this threshold will be masked. Only used if color is a field key.

  • factor (int, or tuple[int, int] (default: 16)) – Fields are downed-sampled by this factor with respect to the background image buffer size. A single integer factor will be used for both direction, but a tuple of 2 integers can be passed to set x and y downsampling independently.

  • **kwargs (any additional keyword arguments will be passed) – directly to matplotlib.axes.Axes.streamplot

annotate_text(pos, text, *, coord_system='data', text_args=None, inset_box_args=None)

Overplot text on the plot at a specified position. If you desire an inset box around your text, set one with the inset_box_args dictionary keyword.

Parameters:
  • pos (2- or 3-element tuple, list, or array) – These are the coordinates where the text will be overplotted

  • text (string) – The text you wish to include

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • text_args (dictionary, optional) – This dictionary is passed to the MPL text function for generating the text. By default, it is: {‘color’:’white’} and uses the defaults for the other fonts in the image.

  • inset_box_args (dictionary, optional) – A dictionary of any arbitrary parameters to be passed to the Matplotlib FancyBboxPatch object as the inset box around the text. Default: {}

Examples

>>> # Overplot white text at data location [0.55, 0.7, 0.4]
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_text([0.55, 0.7, 0.4], "Here is a galaxy")
>>> s.save()
>>> # Overplot yellow text at axis location [0.2, 0.8] with
>>> # a shaded inset box
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_text(
...     [0.2, 0.8],
...     "Here is a galaxy",
...     coord_system="axis",
...     text_args={"color": "yellow"},
...     inset_box_args={
...         "boxstyle": "square,pad=0.3",
...         "facecolor": "black",
...         "linewidth": 3,
...         "edgecolor": "white",
...         "alpha": 0.5,
...     },
... )
>>> s.save()
annotate_timestamp(x_pos=None, y_pos=None, corner='lower_left', *, time=True, redshift=False, time_format='t = {time:.1f} {units}', time_unit=None, redshift_format='z = {redshift:.2f}', draw_inset_box=False, coord_system='axis', time_offset=None, text_args=None, inset_box_args=None)

Annotates the timestamp and/or redshift of the data output at a specified location in the image (either in a present corner, or by specifying (x,y) image coordinates with the x_pos, y_pos arguments. If no time_units are specified, it will automatically choose appropriate units. It allows for custom formatting of the time and redshift information, as well as the specification of an inset box around the text.

Parameters:
  • x_pos (floats, optional) – The image location of the timestamp in the coord system defined by the coord_system kwarg. Setting x_pos and y_pos overrides the corner parameter.

  • y_pos (floats, optional) – The image location of the timestamp in the coord system defined by the coord_system kwarg. Setting x_pos and y_pos overrides the corner parameter.

  • corner (string, optional) – Corner sets up one of 4 predeterimined locations for the timestamp to be displayed in the image: ‘upper_left’, ‘upper_right’, ‘lower_left’, ‘lower_right’ (also allows None). This value will be overridden by the optional x_pos and y_pos keywords.

  • time (boolean, optional) – Whether or not to show the ds.current_time of the data output. Can be used solo or in conjunction with redshift parameter.

  • redshift (boolean, optional) – Whether or not to show the ds.current_time of the data output. Can be used solo or in conjunction with the time parameter.

  • time_format (string, optional) – This specifies the format of the time output assuming “time” is the number of time and “unit” is units of the time (e.g. ‘s’, ‘Myr’, etc.) The time can be specified to arbitrary precision according to printf formatting codes (defaults to .1f – a float with 1 digits after decimal). Example: “Age = {time:.2f} {units}”.

  • time_unit (string, optional) – time_unit must be a valid yt time unit (e.g. ‘s’, ‘min’, ‘hr’, ‘yr’, ‘Myr’, etc.)

  • redshift_format (string, optional) – This specifies the format of the redshift output. The redshift can be specified to arbitrary precision according to printf formatting codes (defaults to 0.2f – a float with 2 digits after decimal). Example: “REDSHIFT = {redshift:03.3g}”,

  • draw_inset_box (boolean, optional) – Whether or not an inset box should be included around the text If so, it uses the inset_box_args to set the matplotlib FancyBboxPatch object.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    • ”data”: 3D dataset coordinates

    • ”plot”: 2D coordinates defined by the actual plot limits

    • ”axis”: MPL axis coordinates: (0,0) is lower left; (1,1) is upper right

    • ”figure”: MPL figure coordinates: (0,0) is lower left, (1,1) is upper right

  • time_offset (float, (value, unit) tuple, or YTQuantity, optional) – Apply an offset to the time shown in the annotation from the value of the current time. If a scalar value with no units is passed in, the value of the time_unit kwarg is used for the units. Default: None, meaning no offset.

  • text_args (dictionary, optional) – A dictionary of any arbitrary parameters to be passed to the Matplotlib text object. Defaults: {'color':'white', 'horizontalalignment':'center', 'verticalalignment':'top'}.

  • inset_box_args (dictionary, optional) – A dictionary of any arbitrary parameters to be passed to the Matplotlib FancyBboxPatch object as the inset box around the text. Defaults: {'boxstyle':'square', 'pad':0.3, 'facecolor':'black', 'linewidth':3, 'edgecolor':'white', 'alpha':0.5}

Example

>>> import yt
>>> ds = yt.load("Enzo_64/DD0020/data0020")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_timestamp()
annotate_title(title)

Accepts a title and adds it to the plot

annotate_triangle_facets(triangle_vertices, *, plot_args=None, **kwargs)

Intended for representing a slice of a triangular faceted geometry in a slice plot.

Uses a set of triangle_vertices to find all triangles the plane of a SlicePlot intersects with. The lines between the intersection points of the triangles are then added to the plot to create an outline of the geometry represented by the triangles.

annotate_velocity(factor: tuple[int, int] | int = 16, *, scale=None, scale_units=None, normalize=False, plot_args=None, **kwargs)

Adds a ‘quiver’ plot of velocity to the plot, skipping all but every factor datapoint. scale is the data units per arrow length unit using scale_units and plot_args allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if normalize is True, the velocity fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength.

property bounds
clear_annotations(index: int | None = None)

Clear callbacks from the plot. If index is not set, clear all callbacks. If index is set, clear that index (ie 0 is the first one created, 1 is the 2nd one created, -1 is the last one created, etc.)

display(name=None, mpl_kwargs=None)

Will attempt to show the plot in in an IPython notebook. Failing that, the plot will be saved to disk.

export_to_mpl_figure(nrows_ncols, axes_pad=1.0, label_mode='L', cbar_location='right', cbar_size='5%', cbar_mode='each', cbar_pad='0%')

Creates a matplotlib figure object with the specified axes arrangement, nrows_ncols, and maps the underlying figures to the matplotlib axes. Note that all of these parameters are fed directly to the matplotlib ImageGrid class to create the new figure layout.

Parameters:
  • nrows_ncols (tuple) – the number of rows and columns of the axis grid (e.g., nrows_ncols=(2,2,))

  • axes_pad (float) – padding between axes in inches

  • label_mode (one of "L", "1", "all") – arrangement of axes that are labeled

  • cbar_location (one of "left", "right", "bottom", "top") – where to place the colorbar

  • cbar_size (string (percentage)) – scaling of the colorbar (e.g., “5%”)

  • cbar_mode (one of "each", "single", "edge", None) – how to represent the colorbar

  • cbar_pad (string (percentage)) – padding between the axis and colorbar (e.g. “5%”)

Return type:

The return is a matplotlib figure object.

Examples

>>> import yt
>>> ds = yt.load_sample("IsolatedGalaxy")
>>> fields = ["density", "velocity_x", "velocity_y", "velocity_magnitude"]
>>> p = yt.SlicePlot(ds, "z", fields)
>>> p.set_log("velocity_x", False)
>>> p.set_log("velocity_y", False)
>>> fig = p.export_to_mpl_figure((2, 2))
>>> fig.tight_layout()
>>> fig.savefig("test.png")
flip_horizontal()

inverts the horizontal axis (the image’s abscissa)

flip_vertical()

inverts the vertical axis (the image’s ordinate)

property frb
get_log(field)

get the transform type of a field.

Parameters:

field (string) – the field to get a transform if field == ‘all’, applies to all plots.

hide_axes(field=None, draw_frame=None)

Hides the axes for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object.

Parameters:
  • field (string, field tuple, or list of strings or field tuples (optional)) – The name of the field(s) that we want to hide the axes.

  • draw_frame (boolean) – If True, the axes frame will still be drawn. Defaults to False. See note below for more details.

Examples

This will save an image with no axes.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_axes()
>>> s.save()

This will save an image with no axis or colorbar.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_axes()
>>> s.hide_colorbar()
>>> s.save()

Note

By default, when removing the axes, the patch on which the axes are drawn is disabled, making it impossible to later change e.g. the background colour. To force the axes patch to be displayed while still hiding the axes, set the draw_frame keyword argument to True.

hide_colorbar(field=None)

Hides the colorbar for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object.

Parameters:

field (string, field tuple, or list of strings or field tuples (optional)) – The name of the field(s) that we want to hide the colorbar. If None or ‘all’ is provided, will default to using all fields available for this object.

Examples

This will save an image with no colorbar.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_colorbar()
>>> s.save()

This will save an image with no axis or colorbar.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_axes()
>>> s.hide_colorbar()
>>> s.save()
list_annotations()

List the current callbacks for the plot, along with their index. This index can be used with clear_annotations to remove a callback from the current plot.

pan(deltas)

Pan the image by specifying absolute code unit coordinate deltas.

Parameters:

deltas (Two-element sequence of floats, quantities, or (float, unit)) –

tuples.

(delta_x, delta_y). If a unit is not supplied the unit is assumed to be code_length.

pan_rel(deltas)

Pan the image by specifying relative deltas, to the FOV.

Parameters:

deltas (sequence of floats) – (delta_x, delta_y) in relative code unit coordinates

piter(*args, **kwargs)
refresh()
render() None

Render plots. This operation is expensive and usually doesn’t need to be requested explicitly. In most cases, yt handles rendering automatically and delays it as much as possible to avoid redundant calls on each plot modification (e.g. via annotate_* methods).

However, valid use cases of this method include: - fine control of render (and clear) operations when yt plots are combined with plot

customizations other than plot callbacks (annotate_*)

  • testing

run_callbacks()
static sanitize_normal_vector(ds, normal) str | ndarray

Return the name of a cartesian axis whener possible, or a 3-element 1D ndarray of float64 in any other valid case. Fail with a descriptive error message otherwise.

save(name: str | list[str] | tuple[str, ...] | None = None, suffix: str | None = None, mpl_kwargs: dict[str, Any] | None = None)

saves the plot to disk.

Parameters:
  • name (string or tuple, optional) – The base of the filename. If name is a directory or if name is not set, the filename of the dataset is used. For a tuple, the resulting path will be given by joining the elements of the tuple

  • suffix (string, optional) – Specify the image type by its suffix. If not specified, the output type will be inferred from the filename. Defaults to ‘.png’.

  • mpl_kwargs (dict, optional) – A dict of keyword arguments to be passed to matplotlib.

  • slc.save(mpl_kwargs={"bbox_inches" (>>>)

set_antialias(aa)

Turn antialiasing on or off.

Parameters:

aa (boolean)

set_axes_unit(unit_name)

Set the unit for display on the x and y axes of the image.

Parameters:

unit_name (string or two element tuple of strings) – A unit, available for conversion in the dataset, that the image extents will be displayed in. If set to None, any previous units will be reset. If the unit is None, the default is chosen. If unit_name is ‘1’, ‘u’, or ‘unitary’, it will not display the units, and only show the axes name. If unit_name is a tuple, the first element is assumed to be the unit for the x axis and the second element the unit for the y axis.

Raises:

YTUnitNotRecognized – If the unit is not known, this will be raised.

Examples

>>> from yt import load
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> p = ProjectionPlot(ds, "y", "Density")
>>> p.set_axes_unit("kpc")
set_background_color(field, color=None)

set the background color to match provided color

Parameters:
  • field (string) – the field to set the colormap if field == ‘all’, applies to all plots.

  • color (string or RGBA tuple (optional)) – if set, set the background color to this color if unset, background color is set to the bottom value of the color map

set_buff_size(size)

Sets a new buffer size for the fixed resolution buffer

Parameters:

size (int or two element sequence of ints) – The number of data elements in the buffer on the x and y axes. If a scalar is provided, then the buffer is assumed to be square.

set_center(new_center, unit='code_length')

Sets a new center for the plot window

Parameters:
  • new_center (two element sequence of floats) – The coordinates of the new center of the image in the coordinate system defined by the plot axes. If the unit keyword is not specified, the coordinates are assumed to be in code units.

  • unit (string) – The name of the unit new_center is given in. If new_center is a YTArray or tuple of YTQuantities, this keyword is ignored.

set_cmap(field, cmap)

set the colormap for one of the fields

Parameters:
  • field (string) – the field to set the colormap if field == ‘all’, applies to all plots.

  • cmap (string or tuple) – If a string, will be interpreted as name of the colormap. If a tuple, it is assumed to be of the form (name, type, number) to be used for palettable functionality. (name, type, number, bool) can be used to specify if a reverse colormap is to be used.

set_colorbar_label(field, label)

Sets the colorbar label.

Parameters:
  • field (str or tuple) – The name of the field to modify the label for.

  • label (str) – The new label

  • plot.set_colorbar_label( (>>>)

  • ("gas" (...)

  • "density")

  • cm$^{-3}$)" ("Dark Matter Density (g)

  • ) (...)

set_colorbar_minorticks(field, state)

turn colorbar minor ticks on or off in the current plot

Displaying minor ticks reduces performance; turn them off using set_colorbar_minorticks(‘all’, False) if drawing speed is a problem.

Parameters:
  • field (string) – the field to remove colorbar minorticks if field == ‘all’, applies to all plots.

  • state (bool) – the state indicating ‘on’ (True) or ‘off’ (False)

set_figure_size(size)

Sets a new figure size for the plot

Parameters:

size (float, a sequence of two floats, or None) – The size of the figure (in units of inches), including the margins but not the colorbar. If a single float is passed, it’s interpreted as the size along the long axis. Pass None to reset

set_font(font_dict=None)

Set the font and font properties.

Parameters:

font_dict (dict) –

A dict of keyword parameters to be passed to matplotlib.font_manager.FontProperties.

Possible keys include:

  • family - The font family. Can be serif, sans-serif, cursive, ‘fantasy’ or ‘monospace’.

  • style - The font style. Either normal, italic or oblique.

  • color - A valid color string like ‘r’, ‘g’, ‘red’, ‘cobalt’, and ‘orange’.

  • variant - Either normal or small-caps.

  • size - Either a relative value of xx-small, x-small, small, medium, large, x-large, xx-large or an absolute font size, e.g. 12

  • stretch - A numeric value in the range 0-1000 or one of ultra-condensed, extra-condensed, condensed, semi-condensed, normal, semi-expanded, expanded, extra-expanded or ultra-expanded

  • weight - A numeric value in the range 0-1000 or one of ultralight, light, normal, regular, book, medium, roman, semibold, demibold, demi, bold, heavy, extra bold, or black

See the matplotlib font manager API documentation for more details. https://matplotlib.org/stable/api/font_manager_api.html

Notes

Mathtext axis labels will only obey the size and color keyword.

Examples

This sets the font to be 24-pt, blue, sans-serif, italic, and bold-face.

>>> slc = SlicePlot(ds, "x", "Density")
>>> slc.set_font(
...     {
...         "family": "sans-serif",
...         "style": "italic",
...         "weight": "bold",
...         "size": 24,
...         "color": "blue",
...     }
... )
set_font_size(size)

Set the size of the font used in the plot

This sets the font size by calling the set_font function. See set_font for more font customization options.

Parameters:
  • size (float)

  • inch). (The absolute size of the font in points (1 pt = 1/72)

set_log(field, log: bool | None = None, *, linthresh: float | unyt_quantity | tuple[float, Unit | str] | Literal['auto'] | None = None, symlog_auto: bool | None = None)

set a field to log, linear, or symlog.

Symlog scaling is a combination of linear and log, where from 0 to a threshold value, it operates as linear, and then beyond that it operates as log. Symlog can also work with negative values in log space as well as negative and positive values simultaneously and symmetrically. If symlog scaling is desired, please set log=True and either set symlog_auto=True or select a value for linthresh.

Parameters:
  • field (string) – the field to set a transform if field == ‘all’, applies to all plots.

  • log (boolean, optional) – set log to True for log scaling, False for linear scaling.

  • linthresh (float, (float, str), unyt_quantity, or 'auto', optional) – when using symlog scaling, linthresh is the value at which scaling transitions from linear to logarithmic. linthresh must be positive. Note: setting linthresh will automatically enable symlog scale

  • arguments (Note that log and linthresh are mutually exclusive)

set_minorticks(field, state)

Turn minor ticks on or off in the current plot.

Displaying minor ticks reduces performance; turn them off using set_minorticks(‘all’, False) if drawing speed is a problem.

Parameters:
  • field (string) – the field to remove minorticks if field == ‘all’, applies to all plots.

  • state (bool) – the state indicating ‘on’ (True) or ‘off’ (False)

set_mpl_projection(mpl_proj)

Set the matplotlib projection type with a cartopy transform function

Given a string or a tuple argument, this will project the data onto the plot axes with the chosen transform function.

Assumes that the underlying data has a PlateCarree transform type.

To annotate the plot with coastlines or other annotations, render() will need to be called after this function to make the axes available for annotation.

Parameters:

mpl_proj (string or tuple) – if passed as a string, mpl_proj is the specified projection type, if passed as a tuple, then tuple will take the form of ("ProjectionType", (args)) or ("ProjectionType", (args), {kwargs}) Valid projection type options include: ‘PlateCarree’, ‘LambertConformal’, ‘LabmbertCylindrical’, ‘Mercator’, ‘Miller’, ‘Mollweide’, ‘Orthographic’, ‘Robinson’, ‘Stereographic’, ‘TransverseMercator’, ‘InterruptedGoodeHomolosine’, ‘RotatedPole’, ‘OGSB’, ‘EuroPP’, ‘Geostationary’, ‘Gnomonic’, ‘NorthPolarStereo’, ‘OSNI’, ‘SouthPolarStereo’, ‘AlbersEqualArea’, ‘AzimuthalEquidistant’, ‘Sinusoidal’, ‘UTM’, ‘NearsidePerspective’, ‘LambertAzimuthalEqualArea’

Examples

This will create a Mollweide projection using Mollweide default values and annotate it with coastlines

>>> import yt
>>> ds = yt.load("")
>>> p = yt.SlicePlot(ds, "altitude", "AIRDENS")
>>> p.set_mpl_projection("AIRDENS", "Mollweide")
>>> p.render()
>>> p.plots["AIRDENS"].axes.coastlines()
>>> p.show()

This will move the PlateCarree central longitude to 90 degrees and annotate with coastlines.

>>> import yt
>>> ds = yt.load("")
>>> p = yt.SlicePlot(ds, "altitude", "AIRDENS")
>>> p.set_mpl_projection(
...     "AIRDENS", ("PlateCarree", (), {"central_longitude": 90, "globe": None})
... )
>>> p.render()
>>> p.plots["AIRDENS"].axes.set_global()
>>> p.plots["AIRDENS"].axes.coastlines()
>>> p.show()

This will create a RoatatedPole projection with the unrotated pole position at 37.5 degrees latitude and 177.5 degrees longitude by passing them in as args.

>>> import yt
>>> ds = yt.load("")
>>> p = yt.SlicePlot(ds, "altitude", "AIRDENS")
>>> p.set_mpl_projection("RotatedPole", (177.5, 37.5))
>>> p.render()
>>> p.plots["AIRDENS"].axes.set_global()
>>> p.plots["AIRDENS"].axes.coastlines()
>>> p.show()

This will create a RoatatedPole projection with the unrotated pole position at 37.5 degrees latitude and 177.5 degrees longitude by passing them in as kwargs.

>>> import yt
>>> ds = yt.load("")
>>> p = yt.SlicePlot(ds, "altitude", "AIRDENS")
>>> p.set_mpl_projection(
...     ("RotatedPole", (), {"pole_latitude": 37.5, "pole_longitude": 177.5})
... )
>>> p.render()
>>> p.plots["AIRDENS"].axes.set_global()
>>> p.plots["AIRDENS"].axes.coastlines()
>>> p.show()
set_norm(field, norm: Normalize)

Set a custom matplotlib.colors.Normalize to plot field.

Any constraints previously set with set_log, set_zlim will be dropped.

Note that any float value attached to norm (e.g. vmin, vmax, vcenter …) will be read in the current displayed units, which can be controlled with the set_unit method.

Parameters:
set_origin(origin)

Set the plot origin.

Parameters:
  • origin (string or length 1, 2, or 3 sequence.) – The location of the origin of the plot coordinate system. This is typically represented by a ‘-’ separated string or a tuple of strings. In the first index the y-location is given by ‘lower’, ‘upper’, or ‘center’. The second index is the x-location, given as ‘left’, ‘right’, or ‘center’. Finally, whether the origin is applied in ‘domain’ space, plot ‘window’ space or ‘native’ simulation coordinate system is given. For example, both ‘upper-right-domain’ and [‘upper’, ‘right’, ‘domain’] place the origin in the upper right hand corner of domain space. If x or y are not given, a value is inferred. For instance, ‘left-domain’ corresponds to the lower-left hand corner of the simulation domain, ‘center-domain’ corresponds to the center of the simulation domain, or ‘center-window’ for the center of the plot window. In the event that none of these options place the origin in a desired location, a sequence of tuples and a string specifying the coordinate space can be given. If plain numeric types are input, units of code_length are assumed. Further examples:

  • =============================== (===============================================)

  • example (format)

  • ===============================

  • 'domain' ('{space}')

  • 'left-window' ('{xloc}-{space}')

  • 'upper-domain' ('{yloc}-{space}')

  • 'lower-right-window' ('{yloc}-{xloc}-{space}')

  • ('{space}'

  • ('window' ())

  • )

  • ('{xloc}'

  • ('right' ('{space}'))

  • 'domain')

  • ('{yloc}'

  • ('lower' ('{space}'))

  • 'window')

  • ('{yloc}'

  • '{xloc}'

  • ('lower'

  • 'right'

  • 'window')

  • ((yloc

  • '{unit}')

  • (xloc

  • '{unit}')

  • ((0 ('{space}'))

  • 'm')

  • (.4

  • 'm')

  • 'window')

  • (xloc

  • yloc

  • (0.23 ('{space}'))

  • 0.5

  • 'domain')

  • ===============================

set_transform(field, name: str)
set_unit(field, new_unit, equivalency=None, equivalency_kwargs=None)

Sets a new unit for the requested field

Parameters:
  • field (string or field tuple) – The name of the field that is to be changed.

  • new_unit (string or Unit object)

  • equivalency (string, optional) – If set, the equivalency to use to convert the current units to the new requested unit. If None, the unit conversion will be done without an equivalency

  • equivalency_kwargs (string, optional) – Keyword arguments to be passed to the equivalency. Only used if equivalency is set.

set_width(width, unit=None)

set the width of the plot window

Parameters:
  • width (float, array of floats, (float, unit) tuple, or tuple of) –

    (float, unit) tuples.

    Width can have four different formats to support windows with variable x and y widths. They are:

    format

    example

    (float, string)

    (10,’kpc’)

    ((float, string), (float, string))

    ((10,’kpc’),(15,’kpc’))

    float

    0.2

    (float, float)

    (0.2, 0.3)

    For example, (10, ‘kpc’) requests a plot window that is 10 kiloparsecs wide in the x and y directions, ((10,’kpc’),(15,’kpc’)) requests a window that is 10 kiloparsecs wide along the x axis and 15 kiloparsecs wide along the y axis. In the other two examples, code units are assumed, for example (0.2, 0.3) requests a plot that has an x width of 0.2 and a y width of 0.3 in code units. If units are provided the resulting plot axis labels will use the supplied units.

  • unit (str) – the unit the width has been specified in. If width is a tuple, this argument is ignored. Defaults to code units.

set_xlabel(label)

Allow the user to modify the X-axis title Defaults to the global value. Fontsize defaults to 18.

Parameters:
  • label (str) – The new string for the x-axis.

  • (cm$^{-3}$)") (>>> plot.set_xlabel("H2I Number Density)

set_ylabel(label)

Allow the user to modify the Y-axis title Defaults to the global value.

Parameters:
  • label (str) – The new string for the y-axis.

  • (K)") (>>> plot.set_ylabel("Temperature)

set_zlim(field, zmin: ~unyt.array.unyt_quantity | tuple[float, ~unyt.unit_object.Unit | str] | float | ~typing.Literal['min'] | ~yt.visualization.plot_container.Unset = <yt.visualization.plot_container.Unset object>, zmax: ~unyt.array.unyt_quantity | tuple[float, ~unyt.unit_object.Unit | str] | float | ~typing.Literal['max'] | ~yt.visualization.plot_container.Unset = <yt.visualization.plot_container.Unset object>, dynamic_range: float | None = None)

set the scale of the colormap

Parameters:
  • field (string) – the field to set a colormap scale if field == ‘all’, applies to all plots.

  • zmin (float, Quantity, or 'min') – the new minimum of the colormap scale. If ‘min’, will set to the minimum value in the current view.

  • zmax (float, Quantity, or 'max') – the new maximum of the colormap scale. If ‘max’, will set to the maximum value in the current view.

  • dynamic_range (float (default: None)) – The dynamic range of the image. If zmin == None, will set zmin = zmax / dynamic_range If zmax == None, will set zmax = zmin * dynamic_range

setup_callbacks()
show()

This will send any existing plots to the IPython notebook.

If yt is being run from within an IPython session, and it is able to determine this, this function will send any existing plots to the notebook for display.

If yt can’t determine if it’s inside an IPython session, it will raise YTNotInsideNotebook.

Examples

>>> from yt import SlicePlot
>>> slc = SlicePlot(
...     ds, "x", [("gas", "density"), ("gas", "velocity_magnitude")]
... )
>>> slc.show()
show_axes(field=None)

Shows the axes for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object. See hide_axes().

Parameters:

field (string, field tuple, or list of strings or field tuples (optional)) – The name of the field(s) that we want to show the axes.

show_colorbar(field=None)

Shows the colorbar for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object. See hide_colorbar().

Parameters:
  • field (string, field tuple, or list of strings or field tuples (optional))

  • colorbar. (The name of the field(s) that we want to show the)

swap_axes()
to_fits_data(fields=None, other_keys=None, length_unit=None, **kwargs)

Export the fields in this PlotWindow instance to a FITSImageData instance.

This will export a set of FITS images of either the fields specified or all the fields already in the object.

Parameters:
  • fields (list of strings) – These fields will be pixelized and output. If “None”, the keys of the FRB will be used.

  • other_keys (dictionary, optional) – A set of header keys and values to write into the FITS header.

  • length_unit (string, optional) – the length units that the coordinates are written in. The default is to use the default length unit of the dataset.

property width
zoom(factor)

This zooms the window by factor > 0. - zoom out with factor < 1 - zoom in with factor > 1

Parameters:

factor (float) – multiplier for the current width

class yt.visualization.particle_plots.OffAxisParticleProjectionPlot(ds, normal=None, *args, axis=None, **kwargs)[source]

Bases: ParticleProjectionPlot, PWViewerMPL

annotate_arrow(pos, *, length=0.03, width=0.0001, head_width=0.01, head_length=0.01, starting_pos=None, coord_system='data', plot_args: dict[str, Any] | None = None, **kwargs)

Overplot arrow(s) pointing at position(s) for highlighting specific features. By default, arrow points from lower left to the designated position “pos” with arrow length “length”. Alternatively, if “starting_pos” is set, arrow will stretch from “starting_pos” to “pos” and “length” will be disregarded.

“coord_system” keyword refers to positions set in “pos” arg and “starting_pos” keyword, which by default are in data coordinates.

“length”, “width”, “head_length”, and “head_width” keywords for the arrow are all in axis units, ie relative to the size of the plot axes as 1, even if the position of the arrow is set relative to another coordinate system.

Parameters:
  • pos (array-like) – These are the coordinates where the marker(s) will be overplotted Either as [x,y,z] or as [[x1,x2,…],[y1,y2,…],[z1,z2,…]]

  • length (float, optional) – The length, in axis units, of the arrow. Default: 0.03

  • width (float, optional) – The width, in axis units, of the tail line of the arrow. Default: 0.003

  • head_length (float, optional) – The length, in axis units, of the head of the arrow. If set to None, use 1.5*head_width Default: None

  • head_width (float, optional) – The width, in axis units, of the head of the arrow. Default: 0.02

  • starting_pos (2- or 3-element tuple, list, or array, optional) – These are the coordinates from which the arrow starts towards its point. Not compatible with ‘length’ kwarg.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • plot_args (dictionary, optional) – This dictionary is passed to the MPL arrow function for generating the arrow. By default, it is: {‘color’:’white’}

Examples

>>> # Overplot an arrow pointing to feature at data coord: (0.2, 0.3, 0.4)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_arrow([0.2, 0.3, 0.4])
>>> s.save()
>>> # Overplot a red arrow with longer length pointing to plot coordinate
>>> # (0.1, -0.1)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_arrow(
...     [0.1, -0.1], length=0.06, coord_system="plot", color="red"
... )
>>> s.save()
annotate_cell_edges(line_width=0.002, alpha=1.0, color='black')

Annotate cell edges. This is done through a second call to pixelize, where the distance from a pixel to a cell boundary in pixels is compared against the line_width argument. The secondary image is colored as color and overlaid with the alpha value.

Parameters:
  • line_width (float) – The width of the cell edge lines in normalized units relative to the size of the longest axis. Default is 1% of the size of the smallest axis.

  • alpha (float) – When the second image is overlaid, it will have this level of alpha transparency. Default is 1.0 (fully-opaque).

  • color (tuple of three floats or matplotlib color name) – This is the color of the cell edge values. It defaults to black.

Examples

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_cell_edges()
>>> s.save()
annotate_clumps(clumps, *, plot_args=None, **kwargs)

Take a list of clumps and plot them as a set of contours.

annotate_contour(field: tuple[str, str] | str, levels: int = 5, *, factor: tuple[int, int] | int = 4, clim: tuple[float, float] | None = None, label: bool = False, take_log: bool | None = None, data_source: YTDataContainer | None = None, plot_args: dict[str, Any] | None = None, text_args: dict[str, Any] | None = None, ncont: int | None = None) None

Add contours in field to the plot. levels governs the number of contours generated, factor governs the number of points used in the interpolation, take_log governs how it is contoured and clim gives the (lower, upper) limits for contouring. An alternate data source can be specified with data_source, but by default the plot’s data source will be queried.

annotate_cquiver(field_x, field_y, field_c=None, *, factor: tuple[int, int] | int = 16, scale=None, scale_units=None, normalize=False, plot_args=None, **kwargs)

Get a quiver plot on top of a cutting plane, using field_x and field_y, skipping every factor datapoint in the discretization. scale is the data units per arrow length unit using scale_units and plot_args allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if normalize is True, the fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength.

annotate_grids(alpha=0.7, min_pix=1, min_pix_ids=20, draw_ids=False, id_loc=None, periodic=True, min_level=None, max_level=None, cmap='B-W LINEAR_r', edgecolors=None, linewidth=1.0)

Draws grids on an existing PlotWindow object. Adds grid boundaries to a plot, optionally with alpha-blending. By default, colors different levels of grids with different colors going from white to black, but you can change to any arbitrary colormap with cmap keyword, to all black grid edges for all levels with cmap=None and edgecolors=None, or to an arbitrary single color for grid edges with edgecolors=’YourChosenColor’ defined in any of the standard ways (e.g., edgecolors=’white’, edgecolors=’r’, edgecolors=’#00FFFF’, or edgecolor=’0.3’, where the last is a float in 0-1 scale indicating gray). Note that setting edgecolors overrides cmap if you have both set to non-None values. Cutoff for display is at min_pix wide. draw_ids puts the grid id a the corner of the grid (but its not so great in projections…). id_loc determines which corner holds the grid id. One can set min and maximum level of grids to display, and can change the linewidth of the displayed grids.

annotate_line(p1, p2, *, coord_system='data', plot_args: dict[str, Any] | None = None, **kwargs)

Overplot a line with endpoints at p1 and p2. p1 and p2 should be 2D or 3D coordinates consistent with the coordinate system denoted in the “coord_system” keyword.

Parameters:
  • p1 (2- or 3-element tuples, lists, or arrays) – These are the coordinates of the endpoints of the line.

  • p2 (2- or 3-element tuples, lists, or arrays) – These are the coordinates of the endpoints of the line.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates p1 and p2. Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • plot_args (dictionary, optional) – This dictionary is passed to the MPL plot function for generating the line. By default, it is: {‘color’:’white’, ‘linewidth’:2}

Examples

>>> # Overplot a diagonal white line from the lower left corner to upper
>>> # right corner
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_line([0, 0], [1, 1], coord_system="axis")
>>> s.save()
>>> # Overplot a red dashed line from data coordinate (0.1, 0.2, 0.3) to
>>> # (0.5, 0.6, 0.7)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_line(
...     [0.1, 0.2, 0.3],
...     [0.5, 0.6, 0.7],
...     coord_system="data",
...     color="red",
...     linestyles="--",
... )
>>> s.save()
annotate_line_integral_convolution(field_x, field_y, texture=None, kernellen=50.0, lim=(0.5, 0.6), cmap='binary', alpha=0.8, const_alpha=False)

Add the line integral convolution to the plot for vector fields visualization. Two component of vector fields needed to be provided (i.e., velocity_x and velocity_y, magnetic_field_x and magnetic_field_y).

Parameters:
  • field_x (string) – The names of two components of vector field which will be visualized

  • field_y (string) – The names of two components of vector field which will be visualized

  • texture (2-d array with the same shape of image, optional) – Texture will be convolved when computing line integral convolution. A white noise background will be used as default.

  • kernellen (float, optional) – The lens of kernel for convolution, which is the length over which the convolution will be performed. For longer kernellen, longer streamline structure will appear.

  • lim (2-element tuple, list, or array, optional) – The value of line integral convolution will be clipped to the range of lim, which applies upper and lower bounds to the values of line integral convolution and enhance the visibility of plots. Each element should be in the range of [0,1].

  • cmap (string, optional) – The name of colormap for line integral convolution plot.

  • alpha (float, optional) – The alpha value for line integral convolution plot.

  • const_alpha (boolean, optional) – If set to False (by default), alpha will be weighted spatially by the values of line integral convolution; otherwise a constant value of the given alpha is used.

Example

>>> import yt
>>> ds = yt.load("Enzo_64/DD0020/data0020")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_line_integral_convolution(
...     "velocity_x", "velocity_y", lim=(0.5, 0.65)
... )
annotate_magnetic_field(factor: tuple[int, int] | int = 16, *, scale=None, scale_units=None, normalize=False, plot_args=None, **kwargs)

Adds a ‘quiver’ plot of magnetic field to the plot, skipping all but every factor datapoint. scale is the data units per arrow length unit using scale_units and plot_args allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if normalize is True, the magnetic fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength.

annotate_marker(pos, marker='x', *, coord_system='data', plot_args=None, **kwargs)

Overplot marker(s) at a position(s) for highlighting specific features.

Parameters:
  • pos (array-like) – These are the coordinates where the marker(s) will be overplotted Either as [x,y,z] or as [[x1,x2,…],[y1,y2,…],[z1,z2,…]]

  • marker (string, optional) – The shape of the marker to be passed to the MPL scatter function. By default, it is ‘x’, but other acceptable values are: ‘.’, ‘o’, ‘v’, ‘^’, ‘s’, ‘p’ ‘*’, etc. See matplotlib.markers for more information.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • plot_args (dictionary, optional) – This dictionary is passed to the MPL scatter function for generating the marker. By default, it is: {‘color’:’white’, ‘s’:50}

Examples

>>> # Overplot a white X on a feature at data location (0.5, 0.5, 0.5)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_marker([0.4, 0.5, 0.6])
>>> s.save()
>>> # Overplot a big yellow circle at axis location (0.1, 0.2)
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_marker(
...     [0.1, 0.2],
...     marker="o",
...     coord_system="axis",
...     color="yellow",
...     s=200,
... )
>>> s.save()
annotate_mesh_lines(*, plot_args=None, **kwargs)

Adds mesh lines to the plot. Only works for unstructured or semi-structured mesh data. For structured grid data, see GridBoundaryCallback or CellEdgesCallback.

Parameters:

plot_args (dict, optional) – A dictionary of arguments that will be passed to matplotlib.

Example

>>> import yt
>>> ds = yt.load("MOOSE_sample_data/out.e-s010")
>>> sl = yt.SlicePlot(ds, "z", ("connect2", "convected"))
>>> sl.annotate_mesh_lines(color="black")
annotate_particles(width, p_size=1.0, col='k', marker='o', stride=1, ptype='all', alpha=1.0, data_source=None)

Adds particle positions, based on a thick slab along axis with a width along the line of sight. p_size controls the number of pixels per particle, and col governs the color. ptype will restrict plotted particles to only those that are of a given type. alpha determines the opacity of the marker symbol used in the scatter. An alternate data source can be specified with data_source, but by default the plot’s data source will be queried.

annotate_quiver(field_x, field_y, field_c=None, *, factor: tuple[int, int] | int = 16, scale=None, scale_units=None, normalize=False, bv_x=0, bv_y=0, plot_args=None, **kwargs)

Adds a ‘quiver’ plot to any plot, using the field_x and field_y from the associated data, skipping every factor pixels. field_c is an optional field name used for color. scale is the data units per arrow length unit using scale_units and plot_args allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if normalize is True, the fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength.

annotate_ray(ray, *, arrow=False, plot_args=None, **kwargs)

Adds a line representing the projected path of a ray across the plot. The ray can be either a YTOrthoRay, YTRay, or a LightRay object. annotate_ray() will properly account for periodic rays across the volume. If arrow is set to True, uses the MPL.pyplot.arrow function, otherwise uses the MPL.pyplot.plot function to plot a normal line. Adjust plot_args accordingly.

Parameters:
  • ray (YTOrthoRay, YTRay, or LightRay) – Ray is the object that we want to include. We overplot the projected trajectory of the ray. If the object is a trident.LightRay object, it will only plot the segment of the LightRay that intersects the dataset currently displayed.

  • arrow (boolean, optional) – Whether or not to place an arrowhead on the front of the ray to denote direction Default: False

  • plot_args (dictionary, optional) – A dictionary of any arbitrary parameters to be passed to the Matplotlib line object. Defaults: {‘color’:’white’, ‘linewidth’:2}.

Examples

>>> # Overplot a ray and an ortho_ray object on a projection
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> oray = ds.ortho_ray(1, (0.3, 0.4))  # orthoray down the y axis
>>> ray = ds.ray((0.1, 0.2, 0.3), (0.6, 0.7, 0.8))  # arbitrary ray
>>> p = yt.ProjectionPlot(ds, "z", "density")
>>> p.annotate_ray(oray)
>>> p.annotate_ray(ray)
>>> p.save()
>>> # Overplot a LightRay object on a projection
>>> import yt
>>> from trident import LightRay
>>> ds = yt.load("enzo_cosmology_plus/RD0004/RD0004")
>>> lr = LightRay(
...     "enzo_cosmology_plus/AMRCosmology.enzo", "Enzo", 0.0, 0.1, time_data=False
... )
>>> lray = lr.make_light_ray(seed=1)
>>> p = yt.ProjectionPlot(ds, "z", "density")
>>> p.annotate_ray(lr)
>>> p.save()
annotate_scale(*, corner='lower_right', coeff=None, unit=None, pos=None, max_frac=0.16, min_frac=0.015, coord_system='axis', text_args=None, size_bar_args=None, draw_inset_box=False, inset_box_args=None, scale_text_format='{scale} {units}')

Annotates the scale of the plot at a specified location in the image (either in a preset corner, or by specifying (x,y) image coordinates with the pos argument. Coeff and units (e.g. 1 Mpc or 100 kpc) refer to the distance scale you desire to show on the plot. If no coeff and units are specified, an appropriate pair will be determined such that your scale bar is never smaller than min_frac or greater than max_frac of your plottable axis length. Additional customization of the scale bar is possible by adjusting the text_args and size_bar_args dictionaries. The text_args dictionary accepts matplotlib’s font_properties arguments to override the default font_properties for the current plot. The size_bar_args dictionary accepts keyword arguments for the AnchoredSizeBar class in matplotlib’s axes_grid toolkit.

Parameters:
  • corner (string, optional) – Corner sets up one of 4 predeterimined locations for the scale bar to be displayed in the image: ‘upper_left’, ‘upper_right’, ‘lower_left’, ‘lower_right’ (also allows None). This value will be overridden by the optional ‘pos’ keyword.

  • coeff (float, optional) – The coefficient of the unit defining the distance scale (e.g. 10 kpc or 100 Mpc) for overplotting. If set to None along with unit keyword, coeff will be automatically determined to be a power of 10 relative to the best-fit unit.

  • unit (string, optional) – unit must be a valid yt distance unit (e.g. ‘m’, ‘km’, ‘AU’, ‘pc’, ‘kpc’, etc.) or set to None. If set to None, will be automatically determined to be the best-fit to the data.

  • pos (2- or 3-element tuples, lists, or arrays, optional) – The image location of the scale bar in the plot coordinate system. Setting pos overrides the corner parameter.

  • min_frac (float, optional) – The minimum/maximum fraction of the axis width for the scale bar to extend. A value of 1 would allow the scale bar to extend across the entire axis width. Only used for automatically calculating best-fit coeff and unit when neither is specified, otherwise disregarded.

  • max_frac (float, optional) – The minimum/maximum fraction of the axis width for the scale bar to extend. A value of 1 would allow the scale bar to extend across the entire axis width. Only used for automatically calculating best-fit coeff and unit when neither is specified, otherwise disregarded.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    • ”data”: 3D dataset coordinates

    • ”plot”: 2D coordinates defined by the actual plot limits

    • ”axis”: MPL axis coordinates: (0,0) is lower left; (1,1) is upper right

    • ”figure”: MPL figure coordinates: (0,0) is lower left, (1,1) is upper right

  • text_args (dictionary, optional) – A dictionary of parameters to used to update the font_properties for the text in this callback. For any property not set, it will use the defaults of the plot. Thus one can modify the text size with text_args={'size':24}

  • size_bar_args (dictionary, optional) – A dictionary of parameters to be passed to the Matplotlib AnchoredSizeBar initializer. Defaults: {'pad': 0.25, 'sep': 5, 'borderpad': 1, 'color': 'w'}

  • draw_inset_box (boolean, optional) – Whether or not an inset box should be included around the scale bar.

  • inset_box_args (dictionary, optional) – A dictionary of keyword arguments to be passed to the matplotlib Patch object that represents the inset box. Defaults: {'facecolor': 'black', 'linewidth': 3, 'edgecolor': 'white', 'alpha': 0.5, 'boxstyle': 'square'}

  • scale_text_format (string, optional) – This specifies the format of the scalebar value assuming “scale” is the numerical value and “unit” is units of the scale (e.g. ‘cm’, ‘kpc’, etc.) The scale can be specified to arbitrary precision according to printf formatting codes. The format string must only specify “scale” and “units”. Example: “Length = {scale:.2f} {units}”. Default: “{scale} {units}”

Example

>>> import yt
>>> ds = yt.load("Enzo_64/DD0020/data0020")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_scale()
annotate_sphere(center, radius, *, coord_system='data', text=None, circle_args=None, text_args=None)

Overplot a circle with designated center and radius with optional text.

Parameters:
  • center (2- or 3-element tuple, list, or array) – These are the coordinates where the circle will be overplotted

  • radius (YTArray, float, or (1, ('kpc')) style tuple) – The radius of the circle in code coordinates

  • circle_args (dict, optional) – This dictionary is passed to the MPL circle object. By default, {‘color’:’white’}

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • text (string, optional) – Optional text to include next to the circle.

  • text_args (dictionary, optional) – This dictionary is passed to the MPL text function. By default, it is: {‘color’:’white’}

Examples

>>> # Overplot a white circle of radius 100 kpc over the central galaxy
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_sphere([0.5, 0.5, 0.5], radius=(100, "kpc"))
>>> s.save()
annotate_streamlines(field_x: tuple[str, str] | str, field_y: tuple[str, str] | str, *, linewidth: float | tuple[str, str] | str = 1.0, linewidth_upscaling: float = 1.0, color: Any | tuple[str, str] | None = None, color_threshold: float | unyt_quantity = -inf, factor: tuple[int, int] | int = 16, field_color=None, display_threshold=None, plot_args=None, **kwargs)

Plot streamlines using matplotlib.axes.Axes.streamplot

Parameters:
  • field_x (field key) – The “velocity” analoguous field along the horizontal direction.

  • field_y (field key) – The “velocity” analoguous field along the vertical direction.

  • linewidth (float, or field key (default: 1.0)) – A constant scalar will be passed directly to matplotlib.axes.Axes.streamplot A field key will be first interpreted by yt and produce the adequate 2D array. Data fields are normalized by their maximum value, so the maximal linewidth is 1 by default. See linewidth_upscaling for fine tuning. Note that the absolute value is taken in all cases.

  • linewidth_upscaling (float (default: 1.0)) – A constant multiplicative factor applied to linewidth. Final linewidth is obtained as: linewidth_upscaling * abs(linewidth) / max(abs(linewidth))

  • color (a color identifier, or a field key (default: matplotlib.rcParams['line.color'])) – A constant color identifier will be passed directly to matplotlib.axes.Axes.streamplot A field key will be first interpreted by yt and produce the adequate 2D array. See https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.streamplot.html for how to customize color mapping using cmap and norm arguments.

  • color_threshold (float or unyt_quantity (default: -inf)) – Regions where the field used for color is lower than this threshold will be masked. Only used if color is a field key.

  • factor (int, or tuple[int, int] (default: 16)) – Fields are downed-sampled by this factor with respect to the background image buffer size. A single integer factor will be used for both direction, but a tuple of 2 integers can be passed to set x and y downsampling independently.

  • **kwargs (any additional keyword arguments will be passed) – directly to matplotlib.axes.Axes.streamplot

annotate_text(pos, text, *, coord_system='data', text_args=None, inset_box_args=None)

Overplot text on the plot at a specified position. If you desire an inset box around your text, set one with the inset_box_args dictionary keyword.

Parameters:
  • pos (2- or 3-element tuple, list, or array) – These are the coordinates where the text will be overplotted

  • text (string) – The text you wish to include

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    ”data” – the 3D dataset coordinates

    ”plot” – the 2D coordinates defined by the actual plot limits

    ”axis” – the MPL axis coordinates: (0,0) is lower left; (1,1) is

    upper right

    ”figure” – the MPL figure coordinates: (0,0) is lower left, (1,1)

    is upper right

  • text_args (dictionary, optional) – This dictionary is passed to the MPL text function for generating the text. By default, it is: {‘color’:’white’} and uses the defaults for the other fonts in the image.

  • inset_box_args (dictionary, optional) – A dictionary of any arbitrary parameters to be passed to the Matplotlib FancyBboxPatch object as the inset box around the text. Default: {}

Examples

>>> # Overplot white text at data location [0.55, 0.7, 0.4]
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_text([0.55, 0.7, 0.4], "Here is a galaxy")
>>> s.save()
>>> # Overplot yellow text at axis location [0.2, 0.8] with
>>> # a shaded inset box
>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_text(
...     [0.2, 0.8],
...     "Here is a galaxy",
...     coord_system="axis",
...     text_args={"color": "yellow"},
...     inset_box_args={
...         "boxstyle": "square,pad=0.3",
...         "facecolor": "black",
...         "linewidth": 3,
...         "edgecolor": "white",
...         "alpha": 0.5,
...     },
... )
>>> s.save()
annotate_timestamp(x_pos=None, y_pos=None, corner='lower_left', *, time=True, redshift=False, time_format='t = {time:.1f} {units}', time_unit=None, redshift_format='z = {redshift:.2f}', draw_inset_box=False, coord_system='axis', time_offset=None, text_args=None, inset_box_args=None)

Annotates the timestamp and/or redshift of the data output at a specified location in the image (either in a present corner, or by specifying (x,y) image coordinates with the x_pos, y_pos arguments. If no time_units are specified, it will automatically choose appropriate units. It allows for custom formatting of the time and redshift information, as well as the specification of an inset box around the text.

Parameters:
  • x_pos (floats, optional) – The image location of the timestamp in the coord system defined by the coord_system kwarg. Setting x_pos and y_pos overrides the corner parameter.

  • y_pos (floats, optional) – The image location of the timestamp in the coord system defined by the coord_system kwarg. Setting x_pos and y_pos overrides the corner parameter.

  • corner (string, optional) – Corner sets up one of 4 predeterimined locations for the timestamp to be displayed in the image: ‘upper_left’, ‘upper_right’, ‘lower_left’, ‘lower_right’ (also allows None). This value will be overridden by the optional x_pos and y_pos keywords.

  • time (boolean, optional) – Whether or not to show the ds.current_time of the data output. Can be used solo or in conjunction with redshift parameter.

  • redshift (boolean, optional) – Whether or not to show the ds.current_time of the data output. Can be used solo or in conjunction with the time parameter.

  • time_format (string, optional) – This specifies the format of the time output assuming “time” is the number of time and “unit” is units of the time (e.g. ‘s’, ‘Myr’, etc.) The time can be specified to arbitrary precision according to printf formatting codes (defaults to .1f – a float with 1 digits after decimal). Example: “Age = {time:.2f} {units}”.

  • time_unit (string, optional) – time_unit must be a valid yt time unit (e.g. ‘s’, ‘min’, ‘hr’, ‘yr’, ‘Myr’, etc.)

  • redshift_format (string, optional) – This specifies the format of the redshift output. The redshift can be specified to arbitrary precision according to printf formatting codes (defaults to 0.2f – a float with 2 digits after decimal). Example: “REDSHIFT = {redshift:03.3g}”,

  • draw_inset_box (boolean, optional) – Whether or not an inset box should be included around the text If so, it uses the inset_box_args to set the matplotlib FancyBboxPatch object.

  • coord_system (string, optional) –

    This string defines the coordinate system of the coordinates of pos Valid coordinates are:

    • ”data”: 3D dataset coordinates

    • ”plot”: 2D coordinates defined by the actual plot limits

    • ”axis”: MPL axis coordinates: (0,0) is lower left; (1,1) is upper right

    • ”figure”: MPL figure coordinates: (0,0) is lower left, (1,1) is upper right

  • time_offset (float, (value, unit) tuple, or YTQuantity, optional) – Apply an offset to the time shown in the annotation from the value of the current time. If a scalar value with no units is passed in, the value of the time_unit kwarg is used for the units. Default: None, meaning no offset.

  • text_args (dictionary, optional) – A dictionary of any arbitrary parameters to be passed to the Matplotlib text object. Defaults: {'color':'white', 'horizontalalignment':'center', 'verticalalignment':'top'}.

  • inset_box_args (dictionary, optional) – A dictionary of any arbitrary parameters to be passed to the Matplotlib FancyBboxPatch object as the inset box around the text. Defaults: {'boxstyle':'square', 'pad':0.3, 'facecolor':'black', 'linewidth':3, 'edgecolor':'white', 'alpha':0.5}

Example

>>> import yt
>>> ds = yt.load("Enzo_64/DD0020/data0020")
>>> s = yt.SlicePlot(ds, "z", "density")
>>> s.annotate_timestamp()
annotate_title(title)

Accepts a title and adds it to the plot

annotate_triangle_facets(triangle_vertices, *, plot_args=None, **kwargs)

Intended for representing a slice of a triangular faceted geometry in a slice plot.

Uses a set of triangle_vertices to find all triangles the plane of a SlicePlot intersects with. The lines between the intersection points of the triangles are then added to the plot to create an outline of the geometry represented by the triangles.

annotate_velocity(factor: tuple[int, int] | int = 16, *, scale=None, scale_units=None, normalize=False, plot_args=None, **kwargs)

Adds a ‘quiver’ plot of velocity to the plot, skipping all but every factor datapoint. scale is the data units per arrow length unit using scale_units and plot_args allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if normalize is True, the velocity fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength.

property bounds
clear_annotations(index: int | None = None)

Clear callbacks from the plot. If index is not set, clear all callbacks. If index is set, clear that index (ie 0 is the first one created, 1 is the 2nd one created, -1 is the last one created, etc.)

display(name=None, mpl_kwargs=None)

Will attempt to show the plot in in an IPython notebook. Failing that, the plot will be saved to disk.

export_to_mpl_figure(nrows_ncols, axes_pad=1.0, label_mode='L', cbar_location='right', cbar_size='5%', cbar_mode='each', cbar_pad='0%')

Creates a matplotlib figure object with the specified axes arrangement, nrows_ncols, and maps the underlying figures to the matplotlib axes. Note that all of these parameters are fed directly to the matplotlib ImageGrid class to create the new figure layout.

Parameters:
  • nrows_ncols (tuple) – the number of rows and columns of the axis grid (e.g., nrows_ncols=(2,2,))

  • axes_pad (float) – padding between axes in inches

  • label_mode (one of "L", "1", "all") – arrangement of axes that are labeled

  • cbar_location (one of "left", "right", "bottom", "top") – where to place the colorbar

  • cbar_size (string (percentage)) – scaling of the colorbar (e.g., “5%”)

  • cbar_mode (one of "each", "single", "edge", None) – how to represent the colorbar

  • cbar_pad (string (percentage)) – padding between the axis and colorbar (e.g. “5%”)

Return type:

The return is a matplotlib figure object.

Examples

>>> import yt
>>> ds = yt.load_sample("IsolatedGalaxy")
>>> fields = ["density", "velocity_x", "velocity_y", "velocity_magnitude"]
>>> p = yt.SlicePlot(ds, "z", fields)
>>> p.set_log("velocity_x", False)
>>> p.set_log("velocity_y", False)
>>> fig = p.export_to_mpl_figure((2, 2))
>>> fig.tight_layout()
>>> fig.savefig("test.png")
flip_horizontal()

inverts the horizontal axis (the image’s abscissa)

flip_vertical()

inverts the vertical axis (the image’s ordinate)

property frb
get_log(field)

get the transform type of a field.

Parameters:

field (string) – the field to get a transform if field == ‘all’, applies to all plots.

hide_axes(field=None, draw_frame=None)

Hides the axes for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object.

Parameters:
  • field (string, field tuple, or list of strings or field tuples (optional)) – The name of the field(s) that we want to hide the axes.

  • draw_frame (boolean) – If True, the axes frame will still be drawn. Defaults to False. See note below for more details.

Examples

This will save an image with no axes.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_axes()
>>> s.save()

This will save an image with no axis or colorbar.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_axes()
>>> s.hide_colorbar()
>>> s.save()

Note

By default, when removing the axes, the patch on which the axes are drawn is disabled, making it impossible to later change e.g. the background colour. To force the axes patch to be displayed while still hiding the axes, set the draw_frame keyword argument to True.

hide_colorbar(field=None)

Hides the colorbar for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object.

Parameters:

field (string, field tuple, or list of strings or field tuples (optional)) – The name of the field(s) that we want to hide the colorbar. If None or ‘all’ is provided, will default to using all fields available for this object.

Examples

This will save an image with no colorbar.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_colorbar()
>>> s.save()

This will save an image with no axis or colorbar.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_axes()
>>> s.hide_colorbar()
>>> s.save()
list_annotations()

List the current callbacks for the plot, along with their index. This index can be used with clear_annotations to remove a callback from the current plot.

pan(deltas)

Pan the image by specifying absolute code unit coordinate deltas.

Parameters:

deltas (Two-element sequence of floats, quantities, or (float, unit)) –

tuples.

(delta_x, delta_y). If a unit is not supplied the unit is assumed to be code_length.

pan_rel(deltas)

Pan the image by specifying relative deltas, to the FOV.

Parameters:

deltas (sequence of floats) – (delta_x, delta_y) in relative code unit coordinates

piter(*args, **kwargs)
refresh()
render() None

Render plots. This operation is expensive and usually doesn’t need to be requested explicitly. In most cases, yt handles rendering automatically and delays it as much as possible to avoid redundant calls on each plot modification (e.g. via annotate_* methods).

However, valid use cases of this method include: - fine control of render (and clear) operations when yt plots are combined with plot

customizations other than plot callbacks (annotate_*)

  • testing

run_callbacks()
static sanitize_normal_vector(ds, normal) str | ndarray

Return the name of a cartesian axis whener possible, or a 3-element 1D ndarray of float64 in any other valid case. Fail with a descriptive error message otherwise.

save(name: str | list[str] | tuple[str, ...] | None = None, suffix: str | None = None, mpl_kwargs: dict[str, Any] | None = None)

saves the plot to disk.

Parameters:
  • name (string or tuple, optional) – The base of the filename. If name is a directory or if name is not set, the filename of the dataset is used. For a tuple, the resulting path will be given by joining the elements of the tuple

  • suffix (string, optional) – Specify the image type by its suffix. If not specified, the output type will be inferred from the filename. Defaults to ‘.png’.

  • mpl_kwargs (dict, optional) – A dict of keyword arguments to be passed to matplotlib.

  • slc.save(mpl_kwargs={"bbox_inches" (>>>)

set_antialias(aa)

Turn antialiasing on or off.

Parameters:

aa (boolean)

set_axes_unit(unit_name)

Set the unit for display on the x and y axes of the image.

Parameters:

unit_name (string or two element tuple of strings) – A unit, available for conversion in the dataset, that the image extents will be displayed in. If set to None, any previous units will be reset. If the unit is None, the default is chosen. If unit_name is ‘1’, ‘u’, or ‘unitary’, it will not display the units, and only show the axes name. If unit_name is a tuple, the first element is assumed to be the unit for the x axis and the second element the unit for the y axis.

Raises:

YTUnitNotRecognized – If the unit is not known, this will be raised.

Examples

>>> from yt import load
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> p = ProjectionPlot(ds, "y", "Density")
>>> p.set_axes_unit("kpc")
set_background_color(field, color=None)

set the background color to match provided color

Parameters:
  • field (string) – the field to set the colormap if field == ‘all’, applies to all plots.

  • color (string or RGBA tuple (optional)) – if set, set the background color to this color if unset, background color is set to the bottom value of the color map

set_buff_size(size)

Sets a new buffer size for the fixed resolution buffer

Parameters:

size (int or two element sequence of ints) – The number of data elements in the buffer on the x and y axes. If a scalar is provided, then the buffer is assumed to be square.

set_center(new_center, unit='code_length')

Sets a new center for the plot window

Parameters:
  • new_center (two element sequence of floats) – The coordinates of the new center of the image in the coordinate system defined by the plot axes. If the unit keyword is not specified, the coordinates are assumed to be in code units.

  • unit (string) – The name of the unit new_center is given in. If new_center is a YTArray or tuple of YTQuantities, this keyword is ignored.

set_cmap(field, cmap)

set the colormap for one of the fields

Parameters:
  • field (string) – the field to set the colormap if field == ‘all’, applies to all plots.

  • cmap (string or tuple) – If a string, will be interpreted as name of the colormap. If a tuple, it is assumed to be of the form (name, type, number) to be used for palettable functionality. (name, type, number, bool) can be used to specify if a reverse colormap is to be used.

set_colorbar_label(field, label)

Sets the colorbar label.

Parameters:
  • field (str or tuple) – The name of the field to modify the label for.

  • label (str) – The new label

  • plot.set_colorbar_label( (>>>)

  • ("gas" (...)

  • "density")

  • cm$^{-3}$)" ("Dark Matter Density (g)

  • ) (...)

set_colorbar_minorticks(field, state)

turn colorbar minor ticks on or off in the current plot

Displaying minor ticks reduces performance; turn them off using set_colorbar_minorticks(‘all’, False) if drawing speed is a problem.

Parameters:
  • field (string) – the field to remove colorbar minorticks if field == ‘all’, applies to all plots.

  • state (bool) – the state indicating ‘on’ (True) or ‘off’ (False)

set_figure_size(size)

Sets a new figure size for the plot

Parameters:

size (float, a sequence of two floats, or None) – The size of the figure (in units of inches), including the margins but not the colorbar. If a single float is passed, it’s interpreted as the size along the long axis. Pass None to reset

set_font(font_dict=None)

Set the font and font properties.

Parameters:

font_dict (dict) –

A dict of keyword parameters to be passed to matplotlib.font_manager.FontProperties.

Possible keys include:

  • family - The font family. Can be serif, sans-serif, cursive, ‘fantasy’ or ‘monospace’.

  • style - The font style. Either normal, italic or oblique.

  • color - A valid color string like ‘r’, ‘g’, ‘red’, ‘cobalt’, and ‘orange’.

  • variant - Either normal or small-caps.

  • size - Either a relative value of xx-small, x-small, small, medium, large, x-large, xx-large or an absolute font size, e.g. 12

  • stretch - A numeric value in the range 0-1000 or one of ultra-condensed, extra-condensed, condensed, semi-condensed, normal, semi-expanded, expanded, extra-expanded or ultra-expanded

  • weight - A numeric value in the range 0-1000 or one of ultralight, light, normal, regular, book, medium, roman, semibold, demibold, demi, bold, heavy, extra bold, or black

See the matplotlib font manager API documentation for more details. https://matplotlib.org/stable/api/font_manager_api.html

Notes

Mathtext axis labels will only obey the size and color keyword.

Examples

This sets the font to be 24-pt, blue, sans-serif, italic, and bold-face.

>>> slc = SlicePlot(ds, "x", "Density")
>>> slc.set_font(
...     {
...         "family": "sans-serif",
...         "style": "italic",
...         "weight": "bold",
...         "size": 24,
...         "color": "blue",
...     }
... )
set_font_size(size)

Set the size of the font used in the plot

This sets the font size by calling the set_font function. See set_font for more font customization options.

Parameters:
  • size (float)

  • inch). (The absolute size of the font in points (1 pt = 1/72)

set_log(field, log: bool | None = None, *, linthresh: float | unyt_quantity | tuple[float, Unit | str] | Literal['auto'] | None = None, symlog_auto: bool | None = None)

set a field to log, linear, or symlog.

Symlog scaling is a combination of linear and log, where from 0 to a threshold value, it operates as linear, and then beyond that it operates as log. Symlog can also work with negative values in log space as well as negative and positive values simultaneously and symmetrically. If symlog scaling is desired, please set log=True and either set symlog_auto=True or select a value for linthresh.

Parameters:
  • field (string) – the field to set a transform if field == ‘all’, applies to all plots.

  • log (boolean, optional) – set log to True for log scaling, False for linear scaling.

  • linthresh (float, (float, str), unyt_quantity, or 'auto', optional) – when using symlog scaling, linthresh is the value at which scaling transitions from linear to logarithmic. linthresh must be positive. Note: setting linthresh will automatically enable symlog scale

  • arguments (Note that log and linthresh are mutually exclusive)

set_minorticks(field, state)

Turn minor ticks on or off in the current plot.

Displaying minor ticks reduces performance; turn them off using set_minorticks(‘all’, False) if drawing speed is a problem.

Parameters:
  • field (string) – the field to remove minorticks if field == ‘all’, applies to all plots.

  • state (bool) – the state indicating ‘on’ (True) or ‘off’ (False)

set_mpl_projection(mpl_proj)

Set the matplotlib projection type with a cartopy transform function

Given a string or a tuple argument, this will project the data onto the plot axes with the chosen transform function.

Assumes that the underlying data has a PlateCarree transform type.

To annotate the plot with coastlines or other annotations, render() will need to be called after this function to make the axes available for annotation.

Parameters:

mpl_proj (string or tuple) – if passed as a string, mpl_proj is the specified projection type, if passed as a tuple, then tuple will take the form of ("ProjectionType", (args)) or ("ProjectionType", (args), {kwargs}) Valid projection type options include: ‘PlateCarree’, ‘LambertConformal’, ‘LabmbertCylindrical’, ‘Mercator’, ‘Miller’, ‘Mollweide’, ‘Orthographic’, ‘Robinson’, ‘Stereographic’, ‘TransverseMercator’, ‘InterruptedGoodeHomolosine’, ‘RotatedPole’, ‘OGSB’, ‘EuroPP’, ‘Geostationary’, ‘Gnomonic’, ‘NorthPolarStereo’, ‘OSNI’, ‘SouthPolarStereo’, ‘AlbersEqualArea’, ‘AzimuthalEquidistant’, ‘Sinusoidal’, ‘UTM’, ‘NearsidePerspective’, ‘LambertAzimuthalEqualArea’

Examples

This will create a Mollweide projection using Mollweide default values and annotate it with coastlines

>>> import yt
>>> ds = yt.load("")
>>> p = yt.SlicePlot(ds, "altitude", "AIRDENS")
>>> p.set_mpl_projection("AIRDENS", "Mollweide")
>>> p.render()
>>> p.plots["AIRDENS"].axes.coastlines()
>>> p.show()

This will move the PlateCarree central longitude to 90 degrees and annotate with coastlines.

>>> import yt
>>> ds = yt.load("")
>>> p = yt.SlicePlot(ds, "altitude", "AIRDENS")
>>> p.set_mpl_projection(
...     "AIRDENS", ("PlateCarree", (), {"central_longitude": 90, "globe": None})
... )
>>> p.render()
>>> p.plots["AIRDENS"].axes.set_global()
>>> p.plots["AIRDENS"].axes.coastlines()
>>> p.show()

This will create a RoatatedPole projection with the unrotated pole position at 37.5 degrees latitude and 177.5 degrees longitude by passing them in as args.

>>> import yt
>>> ds = yt.load("")
>>> p = yt.SlicePlot(ds, "altitude", "AIRDENS")
>>> p.set_mpl_projection("RotatedPole", (177.5, 37.5))
>>> p.render()
>>> p.plots["AIRDENS"].axes.set_global()
>>> p.plots["AIRDENS"].axes.coastlines()
>>> p.show()

This will create a RoatatedPole projection with the unrotated pole position at 37.5 degrees latitude and 177.5 degrees longitude by passing them in as kwargs.

>>> import yt
>>> ds = yt.load("")
>>> p = yt.SlicePlot(ds, "altitude", "AIRDENS")
>>> p.set_mpl_projection(
...     ("RotatedPole", (), {"pole_latitude": 37.5, "pole_longitude": 177.5})
... )
>>> p.render()
>>> p.plots["AIRDENS"].axes.set_global()
>>> p.plots["AIRDENS"].axes.coastlines()
>>> p.show()
set_norm(field, norm: Normalize)

Set a custom matplotlib.colors.Normalize to plot field.

Any constraints previously set with set_log, set_zlim will be dropped.

Note that any float value attached to norm (e.g. vmin, vmax, vcenter …) will be read in the current displayed units, which can be controlled with the set_unit method.

Parameters:
set_origin(origin)

Set the plot origin.

Parameters:
  • origin (string or length 1, 2, or 3 sequence.) – The location of the origin of the plot coordinate system. This is typically represented by a ‘-’ separated string or a tuple of strings. In the first index the y-location is given by ‘lower’, ‘upper’, or ‘center’. The second index is the x-location, given as ‘left’, ‘right’, or ‘center’. Finally, whether the origin is applied in ‘domain’ space, plot ‘window’ space or ‘native’ simulation coordinate system is given. For example, both ‘upper-right-domain’ and [‘upper’, ‘right’, ‘domain’] place the origin in the upper right hand corner of domain space. If x or y are not given, a value is inferred. For instance, ‘left-domain’ corresponds to the lower-left hand corner of the simulation domain, ‘center-domain’ corresponds to the center of the simulation domain, or ‘center-window’ for the center of the plot window. In the event that none of these options place the origin in a desired location, a sequence of tuples and a string specifying the coordinate space can be given. If plain numeric types are input, units of code_length are assumed. Further examples:

  • =============================== (===============================================)

  • example (format)

  • ===============================

  • 'domain' ('{space}')

  • 'left-window' ('{xloc}-{space}')

  • 'upper-domain' ('{yloc}-{space}')

  • 'lower-right-window' ('{yloc}-{xloc}-{space}')

  • ('{space}'

  • ('window' ())

  • )

  • ('{xloc}'

  • ('right' ('{space}'))

  • 'domain')

  • ('{yloc}'

  • ('lower' ('{space}'))

  • 'window')

  • ('{yloc}'

  • '{xloc}'

  • ('lower'

  • 'right'

  • 'window')

  • ((yloc

  • '{unit}')

  • (xloc

  • '{unit}')

  • ((0 ('{space}'))

  • 'm')

  • (.4

  • 'm')

  • 'window')

  • (xloc

  • yloc

  • (0.23 ('{space}'))

  • 0.5

  • 'domain')

  • ===============================

set_transform(field, name: str)
set_unit(field, new_unit, equivalency=None, equivalency_kwargs=None)

Sets a new unit for the requested field

Parameters:
  • field (string or field tuple) – The name of the field that is to be changed.

  • new_unit (string or Unit object)

  • equivalency (string, optional) – If set, the equivalency to use to convert the current units to the new requested unit. If None, the unit conversion will be done without an equivalency

  • equivalency_kwargs (string, optional) – Keyword arguments to be passed to the equivalency. Only used if equivalency is set.

set_width(width, unit=None)

set the width of the plot window

Parameters:
  • width (float, array of floats, (float, unit) tuple, or tuple of) –

    (float, unit) tuples.

    Width can have four different formats to support windows with variable x and y widths. They are:

    format

    example

    (float, string)

    (10,’kpc’)

    ((float, string), (float, string))

    ((10,’kpc’),(15,’kpc’))

    float

    0.2

    (float, float)

    (0.2, 0.3)

    For example, (10, ‘kpc’) requests a plot window that is 10 kiloparsecs wide in the x and y directions, ((10,’kpc’),(15,’kpc’)) requests a window that is 10 kiloparsecs wide along the x axis and 15 kiloparsecs wide along the y axis. In the other two examples, code units are assumed, for example (0.2, 0.3) requests a plot that has an x width of 0.2 and a y width of 0.3 in code units. If units are provided the resulting plot axis labels will use the supplied units.

  • unit (str) – the unit the width has been specified in. If width is a tuple, this argument is ignored. Defaults to code units.

set_xlabel(label)

Allow the user to modify the X-axis title Defaults to the global value. Fontsize defaults to 18.

Parameters:
  • label (str) – The new string for the x-axis.

  • (cm$^{-3}$)") (>>> plot.set_xlabel("H2I Number Density)

set_ylabel(label)

Allow the user to modify the Y-axis title Defaults to the global value.

Parameters:
  • label (str) – The new string for the y-axis.

  • (K)") (>>> plot.set_ylabel("Temperature)

set_zlim(field, zmin: ~unyt.array.unyt_quantity | tuple[float, ~unyt.unit_object.Unit | str] | float | ~typing.Literal['min'] | ~yt.visualization.plot_container.Unset = <yt.visualization.plot_container.Unset object>, zmax: ~unyt.array.unyt_quantity | tuple[float, ~unyt.unit_object.Unit | str] | float | ~typing.Literal['max'] | ~yt.visualization.plot_container.Unset = <yt.visualization.plot_container.Unset object>, dynamic_range: float | None = None)

set the scale of the colormap

Parameters:
  • field (string) – the field to set a colormap scale if field == ‘all’, applies to all plots.

  • zmin (float, Quantity, or 'min') – the new minimum of the colormap scale. If ‘min’, will set to the minimum value in the current view.

  • zmax (float, Quantity, or 'max') – the new maximum of the colormap scale. If ‘max’, will set to the maximum value in the current view.

  • dynamic_range (float (default: None)) – The dynamic range of the image. If zmin == None, will set zmin = zmax / dynamic_range If zmax == None, will set zmax = zmin * dynamic_range

setup_callbacks()
show()

This will send any existing plots to the IPython notebook.

If yt is being run from within an IPython session, and it is able to determine this, this function will send any existing plots to the notebook for display.

If yt can’t determine if it’s inside an IPython session, it will raise YTNotInsideNotebook.

Examples

>>> from yt import SlicePlot
>>> slc = SlicePlot(
...     ds, "x", [("gas", "density"), ("gas", "velocity_magnitude")]
... )
>>> slc.show()
show_axes(field=None)

Shows the axes for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object. See hide_axes().

Parameters:

field (string, field tuple, or list of strings or field tuples (optional)) – The name of the field(s) that we want to show the axes.

show_colorbar(field=None)

Shows the colorbar for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object. See hide_colorbar().

Parameters:
  • field (string, field tuple, or list of strings or field tuples (optional))

  • colorbar. (The name of the field(s) that we want to show the)

swap_axes()
to_fits_data(fields=None, other_keys=None, length_unit=None, **kwargs)

Export the fields in this PlotWindow instance to a FITSImageData instance.

This will export a set of FITS images of either the fields specified or all the fields already in the object.

Parameters:
  • fields (list of strings) – These fields will be pixelized and output. If “None”, the keys of the FRB will be used.

  • other_keys (dictionary, optional) – A set of header keys and values to write into the FITS header.

  • length_unit (string, optional) – the length units that the coordinates are written in. The default is to use the default length unit of the dataset.

property width
zoom(factor)

This zooms the window by factor > 0. - zoom out with factor < 1 - zoom in with factor > 1

Parameters:

factor (float) – multiplier for the current width

class yt.visualization.particle_plots.ParticleAxisAlignedDummyDataSource(center, ds, axis, width, fields, *, weight_field=None, field_parameters=None, data_source=None, deposition='ngp', density=False)[source]

Bases: ParticleDummyDataSource

get_field_parameter(name, default=None)

This is typically only used by derived field functions, but it returns parameters used to generate fields.

class yt.visualization.particle_plots.ParticleDummyDataSource(center, ds, width, fields, dd, *, weight_field=None, field_parameters=None, deposition='ngp', density=False)[source]

Bases: object

get_field_parameter(name, default=None)[source]

This is typically only used by derived field functions, but it returns parameters used to generate fields.

class yt.visualization.particle_plots.ParticleOffAxisDummyDataSource(center, ds, normal_vector, width, fields, *, weight_field=None, field_parameters=None, data_source=None, deposition='ngp', density=False, north_vector=None)[source]

Bases: ParticleDummyDataSource

get_field_parameter(name, default=None)

This is typically only used by derived field functions, but it returns parameters used to generate fields.

class yt.visualization.particle_plots.ParticlePhasePlot(data_source, x_field, y_field, z_fields=None, color='b', x_bins=800, y_bins=800, weight_field=None, deposition='ngp', fontsize=18, figure_size=8.0, shading='nearest')[source]

Bases: PhasePlot

Create a 2d particle phase plot from a data source or from a yt.data_objects.profiles.ParticleProfile object.

Given a data object (all_data, region, sphere, etc.), an x field, y field, and z field (or fields), this will create a particle plot by depositing the particles onto a two-dimensional mesh, using either nearest grid point or cloud-in-cell deposition.

Parameters:
  • data_source (YTSelectionContainer or Dataset) – The data object to be profiled, such as all_data, region, or sphere. If data_source is a Dataset, data_source.all_data() will be used.

  • x_field (str) – The x field for the mesh.

  • y_field (str) – The y field for the mesh.

  • z_fields (None, str, or list) – If None, particles will be splatted onto the mesh, but no colormap will be used. If str or list, the name of the field or fields to be displayed on the colorbar. The displayed values will correspond to the sum of the field or fields along the line of sight. Default: None.

  • color ('b', 'g', 'r', 'c', 'm', 'y', 'k', or 'w') – One the matplotlib-recognized color strings. The color that will indicate the particle locations on the mesh. This argument is ignored if z_fields is not None. Default : ‘b’

  • x_bins (int) – The number of bins in x field for the mesh. Default: 800.

  • y_bins (int) – The number of bins in y field for the mesh. Default: 800.

  • weight_field (str) – The field to weight by. If given, the plot will show a weighted average along the line of sight of the fields given in the z_fields argument. Default: None.

  • deposition (str) – Either ‘ngp’ or ‘cic’. Controls what type of interpolation will be used to deposit the particle z_fields onto the mesh. Default: ‘ngp’

  • fontsize (int) – Font size for all text in the plot. Default: 18.

  • figure_size (int) – Size in inches of the image. Default: 8 (8x8)

  • shading (str) – This argument is directly passed down to matplotlib.axes.Axes.pcolormesh see https://matplotlib.org/3.3.1/gallery/images_contours_and_fields/pcolormesh_grids.html#sphx-glr-gallery-images-contours-and-fields-pcolormesh-grids-py # noqa Default: ‘nearest’

Examples

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> ad = ds.all_data()
>>> plot = ParticlePhasePlot(
...     ad,
...     "particle_position_x",
...     "particle_position_y",
...     ["particle_mass"],
...     x_bins=800,
...     y_bins=800,
... )
>>> plot.save()
>>> # Change plot properties.
>>> plot.set_log("particle_mass", True)
>>> plot.set_unit("particle_position_x", "Mpc")
>>> plot.set_unit("particle_velocity_z", "km/s")
>>> plot.set_unit("particle_mass", "Msun")
annotate_text(xpos=0.0, ypos=0.0, text=None, **text_kwargs)

Allow the user to insert text onto the plot The x-position and y-position must be given as well as the text string. Add text tp plot at location xpos, ypos in plot coordinates (see example below).

Parameters:
  • xpos (float) – Position on plot in x-coordinates.

  • ypos (float) – Position on plot in y-coordinates.

  • text (str) – The text to insert onto the plot.

  • **text_kwargs (dict) – Extra keyword arguments will be passed to matplotlib text instance

  • plot.annotate_text(1e-15 (>>>)

  • 5e4

  • YT") ("Hello)

annotate_title(title)

Set a title for the plot.

Parameters:

title (str) – The title to add.

Examples

>>> plot.annotate_title("This is a phase plot")
display(name=None, mpl_kwargs=None)

Will attempt to show the plot in in an IPython notebook. Failing that, the plot will be saved to disk.

property fields
classmethod from_profile(profile, fontsize=18, figure_size=8.0, shading='nearest')

Instantiate a PhasePlot object from a profile object created with create_profile().

Parameters:

Examples

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> extrema = {
...     ("gas", "density"): (1e-31, 1e-24),
...     ("gas", "temperature"): (1e1, 1e8),
...     ("gas", "mass"): (1e-6, 1e-1),
... }
>>> profile = yt.create_profile(
...     ds.all_data(),
...     [("gas", "density"), ("gas", "temperature")],
...     fields=[("gas", "mass")],
...     extrema=extrema,
...     fractional=True,
... )
>>> ph = yt.PhasePlot.from_profile(profile)
>>> ph.save()
get_log(field)

get the transform type of a field.

Parameters:

field (string) – the field to get a transform if field == ‘all’, applies to all plots.

hide_axes(field=None, draw_frame=None)

Hides the axes for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object.

Parameters:
  • field (string, field tuple, or list of strings or field tuples (optional)) – The name of the field(s) that we want to hide the axes.

  • draw_frame (boolean) – If True, the axes frame will still be drawn. Defaults to False. See note below for more details.

Examples

This will save an image with no axes.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_axes()
>>> s.save()

This will save an image with no axis or colorbar.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_axes()
>>> s.hide_colorbar()
>>> s.save()

Note

By default, when removing the axes, the patch on which the axes are drawn is disabled, making it impossible to later change e.g. the background colour. To force the axes patch to be displayed while still hiding the axes, set the draw_frame keyword argument to True.

hide_colorbar(field=None)

Hides the colorbar for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object.

Parameters:

field (string, field tuple, or list of strings or field tuples (optional)) – The name of the field(s) that we want to hide the colorbar. If None or ‘all’ is provided, will default to using all fields available for this object.

Examples

This will save an image with no colorbar.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_colorbar()
>>> s.save()

This will save an image with no axis or colorbar.

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> s = SlicePlot(ds, 2, "density", "c", (20, "kpc"))
>>> s.hide_axes()
>>> s.hide_colorbar()
>>> s.save()
plot_title = None
property profile
refresh()
render() None

Render plots. This operation is expensive and usually doesn’t need to be requested explicitly. In most cases, yt handles rendering automatically and delays it as much as possible to avoid redundant calls on each plot modification (e.g. via annotate_* methods).

However, valid use cases of this method include: - fine control of render (and clear) operations when yt plots are combined with plot

customizations other than plot callbacks (annotate_*)

  • testing

reset_plot()
save(name: str | None = None, suffix: str | None = None, mpl_kwargs=None)

Saves a 2d profile plot.

Parameters:
  • name (str, optional) – The output file keyword.

  • suffix (string, optional) – Specify the image type by its suffix. If not specified, the output type will be inferred from the filename. Defaults to ‘.png’.

  • mpl_kwargs (dict, optional) – A dict of keyword arguments to be passed to matplotlib.

  • plot.save(mpl_kwargs={"bbox_inches" (>>>)

set_background_color(field, color=None)

set the background color to match provided color

Parameters:
  • field (string) – the field to set the colormap if field == ‘all’, applies to all plots.

  • color (string or RGBA tuple (optional)) – if set, set the background color to this color if unset, background color is set to the bottom value of the color map

set_cmap(field, cmap)

set the colormap for one of the fields

Parameters:
  • field (string) – the field to set the colormap if field == ‘all’, applies to all plots.

  • cmap (string or tuple) – If a string, will be interpreted as name of the colormap. If a tuple, it is assumed to be of the form (name, type, number) to be used for palettable functionality. (name, type, number, bool) can be used to specify if a reverse colormap is to be used.

set_colorbar_label(field, label)

Sets the colorbar label.

Parameters:
  • field (str or tuple) – The name of the field to modify the label for.

  • label (str) – The new label

  • plot.set_colorbar_label( (>>>)

  • ("gas" (...)

  • "density")

  • cm$^{-3}$)" ("Dark Matter Density (g)

  • ) (...)

set_colorbar_minorticks(field, state)

turn colorbar minor ticks on or off in the current plot

Displaying minor ticks reduces performance; turn them off using set_colorbar_minorticks(‘all’, False) if drawing speed is a problem.

Parameters:
  • field (string) – the field to remove colorbar minorticks if field == ‘all’, applies to all plots.

  • state (bool) – the state indicating ‘on’ (True) or ‘off’ (False)

set_figure_size(size)

Sets a new figure size for the plot

Parameters:

size (float, a sequence of two floats, or None) – The size of the figure (in units of inches), including the margins but not the colorbar. If a single float is passed, it’s interpreted as the size along the long axis. Pass None to reset

set_font(font_dict=None)

Set the font and font properties.

Parameters:

font_dict (dict) –

A dict of keyword parameters to be passed to matplotlib.font_manager.FontProperties.

Possible keys include:

  • family - The font family. Can be serif, sans-serif, cursive, ‘fantasy’ or ‘monospace’.

  • style - The font style. Either normal, italic or oblique.

  • color - A valid color string like ‘r’, ‘g’, ‘red’, ‘cobalt’, and ‘orange’.

  • variant - Either normal or small-caps.

  • size - Either a relative value of xx-small, x-small, small, medium, large, x-large, xx-large or an absolute font size, e.g. 12

  • stretch - A numeric value in the range 0-1000 or one of ultra-condensed, extra-condensed, condensed, semi-condensed, normal, semi-expanded, expanded, extra-expanded or ultra-expanded

  • weight - A numeric value in the range 0-1000 or one of ultralight, light, normal, regular, book, medium, roman, semibold, demibold, demi, bold, heavy, extra bold, or black

See the matplotlib font manager API documentation for more details. https://matplotlib.org/stable/api/font_manager_api.html

Notes

Mathtext axis labels will only obey the size and color keyword.

Examples

This sets the font to be 24-pt, blue, sans-serif, italic, and bold-face.

>>> slc = SlicePlot(ds, "x", "Density")
>>> slc.set_font(
...     {
...         "family": "sans-serif",
...         "style": "italic",
...         "weight": "bold",
...         "size": 24,
...         "color": "blue",
...     }
... )
set_font_size(size)

Set the size of the font used in the plot

This sets the font size by calling the set_font function. See set_font for more font customization options.

Parameters:
  • size (float)

  • inch). (The absolute size of the font in points (1 pt = 1/72)

set_log(field, log)

set a field to log or linear.

Parameters:
  • field (string) – the field to set a transform

  • log (boolean) – Log on/off.

set_minorticks(field, state)

Turn minor ticks on or off in the current plot.

Displaying minor ticks reduces performance; turn them off using set_minorticks(‘all’, False) if drawing speed is a problem.

Parameters:
  • field (string) – the field to remove minorticks if field == ‘all’, applies to all plots.

  • state (bool) – the state indicating ‘on’ (True) or ‘off’ (False)

set_norm(field, norm: Normalize)

Set a custom matplotlib.colors.Normalize to plot field.

Any constraints previously set with set_log, set_zlim will be dropped.

Note that any float value attached to norm (e.g. vmin, vmax, vcenter …) will be read in the current displayed units, which can be controlled with the set_unit method.

Parameters:
set_title(field, title)

Set a title for the plot.

Parameters:
  • field (str) – The z field of the plot to add the title.

  • title (str) – The title to add.

Examples

>>> plot.set_title(("gas", "mass"), "This is a phase plot")
set_transform(field, name: str)
set_unit(field, unit)

Sets a new unit for the requested field

Parameters:
  • field (string) – The name of the field that is to be changed.

  • unit (string or Unit object) – The name of the new unit.

set_xlabel(label)

Allow the user to modify the X-axis title Defaults to the global value. Fontsize defaults to 18.

Parameters:
  • label (str) – The new string for the x-axis.

  • (cm$^{-3}$)") (>>> plot.set_xlabel("H2I Number Density)

set_xlim(xmin=None, xmax=None)

Sets the limits of the x bin field

Parameters:
  • xmin (float or None) – The new x minimum in the current x-axis units. Defaults to None, which leaves the xmin unchanged.

  • xmax (float or None) – The new x maximum in the current x-axis units. Defaults to None, which leaves the xmax unchanged.

Examples

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> pp = yt.PhasePlot(ds.all_data(), "density", "temperature", ("gas", "mass"))
>>> pp.set_xlim(1e-29, 1e-24)
>>> pp.save()
set_ylabel(label)

Allow the user to modify the Y-axis title Defaults to the global value.

Parameters:
  • label (str) – The new string for the y-axis.

  • (K)") (>>> plot.set_ylabel("Temperature)

set_ylim(ymin=None, ymax=None)

Sets the plot limits for the y bin field.

Parameters:
  • ymin (float or None) – The new y minimum in the current y-axis units. Defaults to None, which leaves the ymin unchanged.

  • ymax (float or None) – The new y maximum in the current y-axis units. Defaults to None, which leaves the ymax unchanged.

Examples

>>> import yt
>>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> pp = yt.PhasePlot(
...     ds.all_data(),
...     ("gas", "density"),
...     ("gas", "temperature"),
...     ("gas", "mass"),
... )
>>> pp.set_ylim(1e4, 1e6)
>>> pp.save()
set_zlim(field, zmin: ~unyt.array.unyt_quantity | tuple[float, ~unyt.unit_object.Unit | str] | float | ~typing.Literal['min'] | ~yt.visualization.plot_container.Unset = <yt.visualization.plot_container.Unset object>, zmax: ~unyt.array.unyt_quantity | tuple[float, ~unyt.unit_object.Unit | str] | float | ~typing.Literal['max'] | ~yt.visualization.plot_container.Unset = <yt.visualization.plot_container.Unset object>, dynamic_range: float | None = None)

set the scale of the colormap

Parameters:
  • field (string) – the field to set a colormap scale if field == ‘all’, applies to all plots.

  • zmin (float, Quantity, or 'min') – the new minimum of the colormap scale. If ‘min’, will set to the minimum value in the current view.

  • zmax (float, Quantity, or 'max') – the new maximum of the colormap scale. If ‘max’, will set to the maximum value in the current view.

  • dynamic_range (float (default: None)) – The dynamic range of the image. If zmin == None, will set zmin = zmax / dynamic_range If zmax == None, will set zmax = zmin * dynamic_range

show()

This will send any existing plots to the IPython notebook.

If yt is being run from within an IPython session, and it is able to determine this, this function will send any existing plots to the notebook for display.

If yt can’t determine if it’s inside an IPython session, it will raise YTNotInsideNotebook.

Examples

>>> from yt import SlicePlot
>>> slc = SlicePlot(
...     ds, "x", [("gas", "density"), ("gas", "velocity_magnitude")]
... )
>>> slc.show()
show_axes(field=None)

Shows the axes for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object. See hide_axes().

Parameters:

field (string, field tuple, or list of strings or field tuples (optional)) – The name of the field(s) that we want to show the axes.

show_colorbar(field=None)

Shows the colorbar for a plot and updates the size of the plot accordingly. Defaults to operating on all fields for a PlotContainer object. See hide_colorbar().

Parameters:
  • field (string, field tuple, or list of strings or field tuples (optional))

  • colorbar. (The name of the field(s) that we want to show the)

x_log = None
y_log = None
yt.visualization.particle_plots.ParticlePlot(ds, x_field, y_field, z_fields=None, color='b', *args, **kwargs)[source]

A factory function for yt.visualization.particle_plots.ParticleProjectionPlot and yt.visualization.profile_plotter.ParticlePhasePlot objects. This essentially allows for a single entry point to both types of particle plots, the distinction being determined by the fields passed in.

If the x_field and y_field combination corresponds to a valid, right-handed spatial plot, an ParticleProjectionPlot will be returned. This plot object can be updated using one of the many helper functions defined in PlotWindow.

If the x_field and y_field combo do not correspond to a valid ParticleProjectionPlot, then a ParticlePhasePlot. This object can be modified by its own set of helper functions defined in PhasePlot. We note below which arguments are only accepted by ParticleProjectionPlot and which arguments are only accepted by ParticlePhasePlot.

Parameters:
  • ds (yt.data_objects.static_output.Dataset) – This is the dataset object corresponding to the simulation output to be plotted.

  • x_field (string) – This is the particle field that will be plotted on the x-axis.

  • y_field (string) – This is the particle field that will be plotted on the y-axis.

  • z_fields (string, list, or None.) – If None, particles will be splatted onto the plot, but no colormap will be used. The particle color will instead be determined by the ‘color’ argument. If str or list, the name of the field or fields to be displayed on the colorbar. Default: None.

  • color ('b', 'g', 'r', 'c', 'm', 'y', 'k', or 'w') – One the matplotlib-recognized color strings. The color that will indicate the particle locations on the plot. This argument is ignored if z_fields is not None. Default is ‘b’.

  • weight_field (string) – The name of the weighting field. Set to None for no weight.

  • fontsize (integer) – The size of the fonts for the axis, colorbar, and tick labels.

  • data_source (YTSelectionContainer Object) – Object to be used for data selection. Defaults to a region covering the entire simulation.

  • center ('center', 'c', 'left', 'l', 'right', 'r', id of a global extremum, or array-like) –

    The coordinate of the selection’s center. Defaults to the ‘center’, i.e. center of the domain.

    Centering on the min or max of a field is supported by passing a tuple such as (‘min’, (‘gas’, ‘density’)) or (‘max’, (‘gas’, ‘temperature’). A single string may also be used (e.g. “min_density” or “max_temperature”), though it’s not as flexible and does not allow to select an exact field/particle type. With this syntax, the first field matching the provided name is selected. ‘max’ or ‘m’ can be used as a shortcut for (‘max’, (‘gas’, ‘density’)) ‘min’ can be used as a shortcut for (‘min’, (‘gas’, ‘density’))

    One can also select an exact point as a 3 element coordinate sequence, e.g. [0.5, 0.5, 0] Units can be specified by passing in center as a tuple containing a 3-element coordinate sequence and string unit name, e.g. ([0, 0.5, 0.5], “cm”), or by passing in a YTArray. Code units are assumed if unspecified.

    The domain edges along the selected axis can be selected with ‘left’/’l’ and ‘right’/’r’ respectively.

    This argument is only accepted by ParticleProjectionPlot.

  • width (tuple or a float.) –

    Width can have four different formats to support windows with variable x and y widths. They are:

    format

    example

    (float, string)

    (10,’kpc’)

    ((float, string), (float, string))

    ((10,’kpc’),(15,’kpc’))

    float

    0.2

    (float, float)

    (0.2, 0.3)

    For example, (10, ‘kpc’) requests a plot window that is 10 kiloparsecs wide in the x and y directions, ((10,’kpc’),(15,’kpc’)) requests a window that is 10 kiloparsecs wide along the x axis and 15 kiloparsecs wide along the y axis. In the other two examples, code units are assumed, for example (0.2, 0.3) requests a plot that has an x width of 0.2 and a y width of 0.3 in code units. If units are provided the resulting plot axis labels will use the supplied units. This argument is only accepted by ParticleProjectionPlot.

  • depth (A tuple or a float) – A tuple containing the depth to project through and the string key of the unit: (width, ‘unit’). If set to a float, code units are assumed. Defaults to the entire domain. This argument is only accepted by ParticleProjectionPlot.

  • axes_unit (A string) – The name of the unit for the tick labels on the x and y axes. Defaults to None, which automatically picks an appropriate unit. If axes_unit is ‘1’, ‘u’, or ‘unitary’, it will not display the units, and only show the axes name.

  • origin (string or length 1, 2, or 3 sequence of strings) –

    The location of the origin of the plot coordinate system. This is represented by ‘-’ separated string or a tuple of strings. In the first index the y-location is given by ‘lower’, ‘upper’, or ‘center’. The second index is the x-location, given as ‘left’, ‘right’, or ‘center’. Finally, the whether the origin is applied in ‘domain’ space, plot ‘window’ space or ‘native’ simulation coordinate system is given. For example, both ‘upper-right-domain’ and [‘upper’, ‘right’, ‘domain’] both place the origin in the upper right hand corner of domain space. If x or y are not given, a value is inferred. For instance, ‘left-domain’ corresponds to the lower-left hand corner of the simulation domain, ‘center-domain’ corresponds to the center of the simulation domain, or ‘center-window’ for the center of the plot window. Further examples:

    format

    example

    ’{space}’

    ’domain’

    ’{xloc}-{space}’

    ’left-window’

    ’{yloc}-{space}’

    ’upper-domain’

    ’{yloc}-{xloc}-{space}’

    ’lower-right-window’

    (‘{space}’,)

    (‘window’,)

    (‘{xloc}’, ‘{space}’)

    (‘right’, ‘domain’)

    (‘{yloc}’, ‘{space}’)

    (‘lower’, ‘window’)

    (‘{yloc}’, ‘{xloc}’, ‘{space}’)

    (‘lower’, ‘right’, ‘window’)

    This argument is only accepted by ParticleProjectionPlot.

  • window_size (float) – The size of the window on the longest axis (in units of inches), including the margins but not the colorbar. This argument is only accepted by ParticleProjectionPlot.

  • aspect (float) – The aspect ratio of the plot. Set to None for 1. This argument is only accepted by ParticleProjectionPlot.

  • x_bins (int) – The number of bins in x field for the mesh. Defaults to 800. This argument is only accepted by ParticlePhasePlot.

  • y_bins (int) – The number of bins in y field for the mesh. Defaults to 800. This argument is only accepted by ParticlePhasePlot.

  • deposition (str) – Either ‘ngp’ or ‘cic’. Controls what type of interpolation will be used to deposit the particle z_fields onto the mesh. Defaults to ‘ngp’.

  • figure_size (int) – Size in inches of the image. Defaults to 8 (product an 8x8 inch figure). This argument is only accepted by ParticlePhasePlot.

Examples

>>> from yt import load
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> p = yt.ParticlePlot(
...     ds,
...     "particle_position_x",
...     "particle_position_y",
...     "particle_mass",
...     width=(0.5, 0.5),
... )
>>> p.set_unit("particle_mass", "Msun")
>>> p = yt.ParticlePlot(ds, "particle_position_x", "particle_velocity_z", color="g")
class yt.visualization.particle_plots.ParticleProjectionPlot(ds, normal=None, *args, axis=None, **kwargs)[source]

Bases: NormalPlot

Creates a particle plot from a dataset

Given a ds object, a normal to project along, and a field name string, this will return a PWViewerMPL object containing the plot.

The plot can be updated using one of the many helper functions defined in PlotWindow.

Parameters:
  • ds (Dataset) – This is the dataset object corresponding to the simulation output to be plotted.

  • normal (int, str, or 3-element sequence of floats) – This specifies the normal vector to the projection. Valid int values are 0, 1 and 2. Corresponding str values depend on the geometry of the dataset and are generally given by ds.coordinates.axis_order. E.g. in cartesian they are ‘x’, ‘y’ and ‘z’. An arbitrary normal vector may be specified as a 3-element sequence of floats.

  • fields (string, list or None) – If a string or list, the name of the particle field(s) to be used on the colorbar. The color shown will correspond to the sum of the given field along the line of sight. If None, the particle positions will be indicated using a fixed color, instead. Default is None.

  • color ('b', 'g', 'r', 'c', 'm', 'y', 'k', or 'w') – One the matplotlib-recognized color strings. The color that will indicate the particle locations on the mesh. This argument is ignored if z_fields is not None. Default is ‘b’.

  • center ('center', 'c', 'left', 'l', 'right', 'r', id of a global extremum, or array-like) –

    The coordinate of the selection’s center. Defaults to the ‘center’, i.e. center of the domain.

    Centering on the min or max of a field is supported by passing a tuple such as (‘min’, (‘gas’, ‘density’)) or (‘max’, (‘gas’, ‘temperature’). A single string may also be used (e.g. “min_density” or “max_temperature”), though it’s not as flexible and does not allow to select an exact field/particle type. With this syntax, the first field matching the provided name is selected. ‘max’ or ‘m’ can be used as a shortcut for (‘max’, (‘gas’, ‘density’)) ‘min’ can be used as a shortcut for (‘min’, (‘gas’, ‘density’))

    One can also select an exact point as a 3 element coordinate sequence, e.g. [0.5, 0.5, 0] Units can be specified by passing in center as a tuple containing a 3-element coordinate sequence and string unit name, e.g. ([0, 0.5, 0.5], “cm”), or by passing in a YTArray. Code units are assumed if unspecified.

    The domain edges along the selected axis can be selected with ‘left’/’l’ and ‘right’/’r’ respectively.

  • width (tuple or a float.) –

    Width can have four different formats to support windows with variable x and y widths. They are:

    format

    example

    (float, string)

    (10,’kpc’)

    ((float, string), (float, string))

    ((10,’kpc’),(15,’kpc’))

    float

    0.2

    (float, float)

    (0.2, 0.3)

    For example, (10, ‘kpc’) requests a plot window that is 10 kiloparsecs wide in the x and y directions, ((10,’kpc’),(15,’kpc’)) requests a window that is 10 kiloparsecs wide along the x-axis and 15 kiloparsecs wide along the y-axis. In the other two examples, code units are assumed, for example (0.2, 0.3) requests a plot that has an x width of 0.2 and a y width of 0.3 in code units. If units are provided the resulting plot axis labels will use the supplied units.

  • depth (A tuple or a float) – A tuple containing the depth to project through and the string key of the unit: (width, ‘unit’). If set to a float, code units are assumed. Defaults to the entire domain.

  • weight_field (string) – The name of the weighting field. Set to None for no weight. If given, the plot will show a weighted average along the line of sight of the fields given in the fields argument.

  • axes_unit (A string) – The name of the unit for the tick labels on the x and y axes. Defaults to None, which automatically picks an appropriate unit. If axes_unit is ‘1’, ‘u’, or ‘unitary’, it will not display the units, and only show the axes name.

  • origin (string or length 1, 2, or 3 sequence of strings) –

    The location of the origin of the plot coordinate system. This is represented by ‘-’ separated string or a tuple of strings. In the first index the y-location is given by ‘lower’, ‘upper’, or ‘center’. The second index is the x-location, given as ‘left’, ‘right’, or ‘center’. Finally, whether the origin is applied in ‘domain’ space, plot ‘window’ space or ‘native’ simulation coordinate system is given. For example, both ‘upper-right-domain’ and [‘upper’, ‘right’, ‘domain’] both place the origin in the upper right hand corner of domain space. If x or y are not given, a value is inferred. For instance, ‘left-domain’ corresponds to the lower-left hand corner of the simulation domain, ‘center-domain’ corresponds to the center of the simulation domain, or ‘center-window’ for the center of the plot window. Further examples:

    format

    example

    ’{space}’

    ’domain’

    ’{xloc}-{space}’

    ’left-window’

    ’{yloc}-{space}’

    ’upper-domain’

    ’{yloc}-{xloc}-{space}’

    ’lower-right-window’

    (‘{space}’,)

    (‘window’,)

    (‘{xloc}’, ‘{space}’)

    (‘right’, ‘domain’)

    (‘{yloc}’, ‘{space}’)

    (‘lower’, ‘window’)

    (‘{yloc}’, ‘{xloc}’, ‘{space}’)

    (‘lower’, ‘right’, ‘window’)

  • fontsize (integer) – The size of the fonts for the axis, colorbar, and tick labels.

  • field_parameters (dictionary) – A dictionary of field parameters than can be accessed by derived fields.

  • window_size (float) – The size of the window on the longest axis (in units of inches), including the margins but not the colorbar.

  • aspect (float) – The aspect ratio of the plot. Set to None for 1.

  • data_source (YTSelectionContainer object) – The object to be used for data selection. Defaults to a region covering the entire simulation.

  • deposition (string) – Controls the order of the interpolation of the particles onto the mesh. “ngp” is 0th-order “nearest-grid-point” method (the default), “cic” is 1st-order “cloud-in-cell”.

  • density (boolean) – If True, the quantity to be projected will be divided by the area of the cells, to make a projected density of the quantity. The plot name and units will also reflect this. Default: False

  • north_vector (a sequence of floats) – A vector defining the ‘up’ direction in off-axis particle projection plots; not used if the plot is on-axis. This option sets the orientation of the projected plane. If not set, an arbitrary grid-aligned north-vector is chosen.

Examples

This will save an image to the file ‘galaxy0030_Particle_z_particle_mass.png’

>>> from yt import load
>>> ds = load("IsolatedGalaxy/galaxy0030/galaxy0030")
>>> p = yt.ParticleProjectionPlot(ds, 2, "particle_mass")
>>> p.save()
static sanitize_normal_vector(ds, normal) str | ndarray

Return the name of a cartesian axis whener possible, or a 3-element 1D ndarray of float64 in any other valid case. Fail with a descriptive error message otherwise.