yt.utilities.particle_generator module¶
- class yt.utilities.particle_generator.FromListParticleGenerator(ds, num_particles, data, ptype='io')[source]¶
Bases:
ParticleGenerator
- apply_to_stream(overwrite=False, **kwargs)¶
Apply the particles to a grid-based stream dataset. If particles already exist, and overwrite=False, do not overwrite them, but add the new ones to them.
- assign_indices(function=None, **kwargs)¶
Assign unique indices to the particles. The default is to just use numpy.arange, but any function may be supplied with keyword arguments.
- get_for_grid(grid)¶
Return a dict containing all of the particle fields in the specified grid.
- has_key(key)¶
Check to see if key is in the particle field list.
- keys()¶
Return the list of particle fields.
- map_grid_fields_to_particles(mapping_dict)¶
For the fields in mapping_dict, map grid fields to the particles using CIC sampling.
Examples
>>> field_map = { ... "density": "particle_density", ... "temperature": "particle_temperature", ... } >>> particles.map_grid_fields_to_particles(field_map)
- class yt.utilities.particle_generator.LatticeParticleGenerator(ds, particles_dims, particles_left_edge, particles_right_edge, field_list, ptype='io')[source]¶
Bases:
ParticleGenerator
- apply_to_stream(overwrite=False, **kwargs)¶
Apply the particles to a grid-based stream dataset. If particles already exist, and overwrite=False, do not overwrite them, but add the new ones to them.
- assign_indices(function=None, **kwargs)¶
Assign unique indices to the particles. The default is to just use numpy.arange, but any function may be supplied with keyword arguments.
- get_for_grid(grid)¶
Return a dict containing all of the particle fields in the specified grid.
- has_key(key)¶
Check to see if key is in the particle field list.
- keys()¶
Return the list of particle fields.
- map_grid_fields_to_particles(mapping_dict)¶
For the fields in mapping_dict, map grid fields to the particles using CIC sampling.
Examples
>>> field_map = { ... "density": "particle_density", ... "temperature": "particle_temperature", ... } >>> particles.map_grid_fields_to_particles(field_map)
- class yt.utilities.particle_generator.ParticleGenerator(ds, num_particles, field_list, ptype='io')[source]¶
Bases:
object
- apply_to_stream(overwrite=False, **kwargs)[source]¶
Apply the particles to a grid-based stream dataset. If particles already exist, and overwrite=False, do not overwrite them, but add the new ones to them.
- assign_indices(function=None, **kwargs)[source]¶
Assign unique indices to the particles. The default is to just use numpy.arange, but any function may be supplied with keyword arguments.
- get_for_grid(grid)[source]¶
Return a dict containing all of the particle fields in the specified grid.
- map_grid_fields_to_particles(mapping_dict)[source]¶
For the fields in mapping_dict, map grid fields to the particles using CIC sampling.
Examples
>>> field_map = { ... "density": "particle_density", ... "temperature": "particle_temperature", ... } >>> particles.map_grid_fields_to_particles(field_map)
- class yt.utilities.particle_generator.WithDensityParticleGenerator(ds, data_source, num_particles, field_list, density_field=('gas', 'density'), ptype='io')[source]¶
Bases:
ParticleGenerator
- apply_to_stream(overwrite=False, **kwargs)¶
Apply the particles to a grid-based stream dataset. If particles already exist, and overwrite=False, do not overwrite them, but add the new ones to them.
- assign_indices(function=None, **kwargs)¶
Assign unique indices to the particles. The default is to just use numpy.arange, but any function may be supplied with keyword arguments.
- get_for_grid(grid)¶
Return a dict containing all of the particle fields in the specified grid.
- has_key(key)¶
Check to see if key is in the particle field list.
- keys()¶
Return the list of particle fields.
- map_grid_fields_to_particles(mapping_dict)¶
For the fields in mapping_dict, map grid fields to the particles using CIC sampling.
Examples
>>> field_map = { ... "density": "particle_density", ... "temperature": "particle_temperature", ... } >>> particles.map_grid_fields_to_particles(field_map)