Source code for yt.visualization.volume_rendering.transfer_function_helper

from io import BytesIO

import numpy as np

from yt.data_objects.profiles import create_profile
from yt.funcs import mylog
from yt.visualization.volume_rendering.transfer_functions import ColorTransferFunction


[docs] class TransferFunctionHelper: r"""A transfer function helper. This attempts to help set up a good transfer function by finding bounds, handling linear/log options, and displaying the transfer function combined with 1D profiles of rendering quantity. Parameters ---------- ds: A Dataset instance A static output that is currently being rendered. This is used to help set up data bounds. Notes ----- """ profiles = None def __init__(self, ds): self.ds = ds self.field = None self.log = False self.tf = None self.bounds = None self.grey_opacity = False self.profiles = {}
[docs] def set_bounds(self, bounds=None): """ Set the bounds of the transfer function. Parameters ---------- bounds: array-like, length 2, optional A length 2 list/array in the form [min, max]. These should be the raw values and not the logarithm of the min and max. If bounds is None, the bounds of the data are calculated from all of the data in the dataset. This can be slow for very large datasets. """ if bounds is None: bounds = self.ds.all_data().quantities["Extrema"](self.field, non_zero=True) bounds = [b.ndarray_view() for b in bounds] self.bounds = bounds # Do some error checking. assert len(self.bounds) == 2 if self.log: assert self.bounds[0] > 0.0 assert self.bounds[1] > 0.0 return
[docs] def set_field(self, field): """ Set the field to be rendered Parameters ---------- field: string The field to be rendered. """ if field != self.field: self.log = self.ds._get_field_info(field).take_log self.field = field
[docs] def set_log(self, log): """ Set whether or not the transfer function should be in log or linear space. Also modifies the ds.field_info[field].take_log attribute to stay in sync with this setting. Parameters ---------- log: boolean Sets whether the transfer function should use log or linear space. """ self.log = log
[docs] def build_transfer_function(self): """ Builds the transfer function according to the current state of the TransferFunctionHelper. Returns ------- A ColorTransferFunction object. """ if self.bounds is None: mylog.info( "Calculating data bounds. This may take a while. " "Set the TransferFunctionHelper.bounds to avoid this." ) self.set_bounds() if self.log: mi, ma = np.log10(self.bounds[0]), np.log10(self.bounds[1]) else: mi, ma = self.bounds self.tf = ColorTransferFunction( (mi, ma), grey_opacity=self.grey_opacity, nbins=512 ) return self.tf
[docs] def setup_default(self): """Setup a default colormap Creates a ColorTransferFunction including 10 gaussian layers whose colors sample the 'nipy_spectral' colormap. Also attempts to scale the transfer function to produce a natural contrast ratio. """ self.tf.add_layers(10, colormap="nipy_spectral") factor = self.tf.funcs[-1].y.size / self.tf.funcs[-1].y.sum() self.tf.funcs[-1].y *= 2 * factor
[docs] def plot(self, fn=None, profile_field=None, profile_weight=None): """ Save the current transfer function to a bitmap, or display it inline. Parameters ---------- fn: string, optional Filename to save the image to. If None, the returns an image to an IPython session. Returns ------- If fn is None, will return an image to an IPython notebook. """ from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.figure import Figure if self.tf is None: self.build_transfer_function() self.setup_default() tf = self.tf if self.log: xfunc = np.logspace xmi, xma = np.log10(self.bounds[0]), np.log10(self.bounds[1]) else: xfunc = np.linspace xmi, xma = self.bounds x = xfunc(xmi, xma, tf.nbins) y = tf.funcs[3].y w = np.append(x[1:] - x[:-1], x[-1] - x[-2]) colors = np.array( [tf.funcs[0].y, tf.funcs[1].y, tf.funcs[2].y, np.ones_like(x)] ).T fig = Figure(figsize=[6, 3]) canvas = FigureCanvasAgg(fig) ax = fig.add_axes([0.2, 0.2, 0.75, 0.75]) ax.bar( x, tf.funcs[3].y, w, edgecolor=[0.0, 0.0, 0.0, 0.0], log=self.log, color=colors, bottom=[0], ) if profile_field is not None: try: prof = self.profiles[self.field] except KeyError: self.setup_profile(profile_field, profile_weight) prof = self.profiles[self.field] try: prof[profile_field] except KeyError: prof.add_fields([profile_field]) xplot = prof.x yplot = ( prof[profile_field] * tf.funcs[3].y.max() / prof[profile_field].max() ) ax.plot(xplot, yplot, color="w", linewidth=3) ax.plot(xplot, yplot, color="k") ax.set_xscale({True: "log", False: "linear"}[self.log]) ax.set_xlim(x.min(), x.max()) ax.set_xlabel(self.ds._get_field_info(self.field).get_label()) ax.set_ylabel(r"$\mathrm{alpha}$") ax.set_ylim(y.max() * 1.0e-3, y.max() * 2) if fn is None: from IPython.core.display import Image f = BytesIO() canvas.print_figure(f) f.seek(0) img = f.read() return Image(img) else: fig.savefig(fn)
[docs] def setup_profile(self, profile_field=None, profile_weight=None): if profile_field is None: profile_field = "cell_volume" prof = create_profile( self.ds.all_data(), self.field, profile_field, n_bins=128, extrema={self.field: self.bounds}, weight_field=profile_weight, logs={self.field: self.log}, ) self.profiles[self.field] = prof return