Source code for yt.visualization.volume_rendering.off_axis_projection

import numpy as np

from yt.data_objects.api import ImageArray
from yt.funcs import is_sequence, mylog
from yt.geometry.oct_geometry_handler import OctreeIndex
from yt.units.unit_object import Unit  # type: ignore
from yt.utilities.lib.image_utilities import add_cells_to_image_offaxis
from yt.utilities.lib.partitioned_grid import PartitionedGrid
from yt.utilities.lib.pixelization_routines import (
    normalization_2d_utility,
    off_axis_projection_SPH,
)
from yt.visualization.volume_rendering.lens import PlaneParallelLens

from .render_source import KDTreeVolumeSource
from .scene import Scene
from .transfer_functions import ProjectionTransferFunction
from .utils import data_source_or_all


[docs] def off_axis_projection( data_source, center, normal_vector, width, resolution, item, weight=None, volume=None, no_ghost=False, interpolated=False, north_vector=None, depth=None, num_threads=1, method="integrate", ): r"""Project through a dataset, off-axis, and return the image plane. This function will accept the necessary items to integrate through a volume at an arbitrary angle and return the integrated field of view to the user. Note that if a weight is supplied, it will multiply the pre-interpolated values together, then create cell-centered values, then interpolate within the cell to conduct the integration. Parameters ---------- data_source : ~yt.data_objects.static_output.Dataset or ~yt.data_objects.data_containers.YTSelectionDataContainer This is the dataset or data object to volume render. center : array_like The current 'center' of the view port -- the focal point for the camera. normal_vector : array_like The vector between the camera position and the center. width : float or list of floats The current width of the image. If a single float, the volume is cubical, but if not, it is left/right, top/bottom, front/back resolution : int or list of ints The number of pixels in each direction. item: string The field to project through the volume weight : optional, default None If supplied, the field will be pre-multiplied by this, then divided by the integrated value of this field. This returns an average rather than a sum. volume : `yt.extensions.volume_rendering.AMRKDTree`, optional The volume to ray cast through. Can be specified for finer-grained control, but otherwise will be automatically generated. no_ghost: bool, optional Optimization option. If True, homogenized bricks will extrapolate out from grid instead of interpolating from ghost zones that have to first be calculated. This can lead to large speed improvements, but at a loss of accuracy/smoothness in resulting image. The effects are less notable when the transfer function is smooth and broad. Default: True interpolated : optional, default False If True, the data is first interpolated to vertex-centered data, then tri-linearly interpolated along the ray. Not suggested for quantitative studies. north_vector : optional, array_like, default None A vector that, if specified, restricts the orientation such that the north vector dotted into the image plane points "up". Useful for rotations depth: float, tuple[float, str], or unyt_array of size 1. specify the depth of the projection region (size along the line of sight). If no units are given (unyt_array or second tuple element), code units are assumed. num_threads: integer, optional, default 1 Use this many OpenMP threads during projection. method : string The method of projection. Valid methods are: "integrate" with no weight_field specified : integrate the requested field along the line of sight. "integrate" with a weight_field specified : weight the requested field by the weighting field and integrate along the line of sight. "sum" : This method is the same as integrate, except that it does not multiply by a path length when performing the integration, and is just a straight summation of the field along the given axis. WARNING: This should only be used for uniform resolution grid datasets, as other datasets may result in unphysical images. or camera movements. Returns ------- image : array An (N,N) array of the final integrated values, in float64 form. Examples -------- >>> image = off_axis_projection( ... ds, ... [0.5, 0.5, 0.5], ... [0.2, 0.3, 0.4], ... 0.2, ... N, ... ("gas", "temperature"), ... ("gas", "density"), ... ) >>> write_image(np.log10(image), "offaxis.png") """ if method not in ("integrate", "sum"): raise NotImplementedError( "Only 'integrate' or 'sum' methods are valid for off-axis-projections" ) if interpolated: raise NotImplementedError( "Only interpolated=False methods are currently implemented " "for off-axis-projections" ) data_source = data_source_or_all(data_source) item = data_source._determine_fields([item])[0] # Assure vectors are numpy arrays as expected by cython code normal_vector = np.array(normal_vector, dtype="float64") if north_vector is not None: north_vector = np.array(north_vector, dtype="float64") # Add the normal as a field parameter to the data source # so line of sight fields can use it data_source.set_field_parameter("axis", normal_vector) # Sanitize units if not hasattr(center, "units"): center = data_source.ds.arr(center, "code_length") if not hasattr(width, "units"): width = data_source.ds.arr(width, "code_length") if depth is not None: # handle units (intrinsic or as a tuple), # then convert to code length # float -> assumed to be in code units if isinstance(depth, tuple): depth = data_source.ds.arr(np.array([depth[0]]), depth[1]) if hasattr(depth, "units"): depth = depth.to("code_length").d # depth = data_source.ds.arr(depth, "code_length") if hasattr(data_source.ds, "_sph_ptypes"): if method != "integrate": raise NotImplementedError("SPH Only allows 'integrate' method") sph_ptypes = data_source.ds._sph_ptypes fi = data_source.ds.field_info[item] raise_error = False ptype = sph_ptypes[0] ppos = [f"particle_position_{ax}" for ax in "xyz"] # Assure that the field we're trying to off-axis project # has a field type as the SPH particle type or if the field is an # alias to an SPH field or is a 'gas' field if item[0] in data_source.ds.known_filters: if item[0] not in sph_ptypes: raise_error = True else: ptype = item[0] ppos = ["x", "y", "z"] elif fi.is_alias: if fi.alias_name[0] not in sph_ptypes: raise_error = True elif item[0] != "gas": ptype = item[0] else: if fi.name[0] not in sph_ptypes and fi.name[0] != "gas": raise_error = True if raise_error: raise RuntimeError( "Can only perform off-axis projections for SPH fields, " f"Received {item!r}" ) normal = np.array(normal_vector) normal = normal / np.linalg.norm(normal) # If north_vector is None, we set the default here. # This is chosen so that if normal_vector is one of the # cartesian coordinate axes, the projection will match # the corresponding on-axis projection. if north_vector is None: vecs = np.identity(3) t = np.cross(vecs, normal).sum(axis=1) ax = t.argmax() east_vector = np.cross(vecs[ax, :], normal).ravel() north = np.cross(normal, east_vector).ravel() else: north = np.array(north_vector) north = north / np.linalg.norm(north) east_vector = np.cross(north, normal).ravel() # if weight is None: buf = np.zeros((resolution[0], resolution[1]), dtype="float64") mask = np.ones_like(buf, dtype="uint8") ## width from fixed_resolution.py is just the size of the domain # x_min = center[0] - width[0] / 2 # x_max = center[0] + width[0] / 2 # y_min = center[1] - width[1] / 2 # y_max = center[1] + width[1] / 2 # z_min = center[2] - width[2] / 2 # z_max = center[2] + width[2] / 2 periodic = data_source.ds.periodicity le = data_source.ds.domain_left_edge.to("code_length").d re = data_source.ds.domain_right_edge.to("code_length").d x_min, y_min, z_min = le x_max, y_max, z_max = re bounds = [x_min, x_max, y_min, y_max, z_min, z_max] # only need (rotated) x/y widths _width = (width.to("code_length").d)[:2] finfo = data_source.ds.field_info[item] ounits = finfo.output_units kernel_name = None if hasattr(data_source.ds, "kernel_name"): kernel_name = data_source.ds.kernel_name if kernel_name is None: kernel_name = "cubic" if weight is None: for chunk in data_source.chunks([], "io"): off_axis_projection_SPH( chunk[ptype, ppos[0]].to("code_length").d, chunk[ptype, ppos[1]].to("code_length").d, chunk[ptype, ppos[2]].to("code_length").d, chunk[ptype, "mass"].to("code_mass").d, chunk[ptype, "density"].to("code_density").d, chunk[ptype, "smoothing_length"].to("code_length").d, bounds, center.to("code_length").d, _width, periodic, chunk[item].in_units(ounits), buf, mask, normal_vector, north, depth=depth, kernel_name=kernel_name, ) # Assure that the path length unit is in the default length units # for the dataset by scaling the units of the smoothing length, # which in the above calculation is set to be code_length path_length_unit = Unit( "code_length", registry=data_source.ds.unit_registry ) default_path_length_unit = data_source.ds.unit_system["length"] buf *= data_source.ds.quan(1, path_length_unit).in_units( default_path_length_unit ) item_unit = data_source.ds._get_field_info(item).units item_unit = Unit(item_unit, registry=data_source.ds.unit_registry) funits = item_unit * default_path_length_unit else: # if there is a weight field, take two projections: # one of field*weight, the other of just weight, and divide them weight_buff = np.zeros((resolution[0], resolution[1]), dtype="float64") wounits = data_source.ds.field_info[weight].output_units for chunk in data_source.chunks([], "io"): off_axis_projection_SPH( chunk[ptype, ppos[0]].to("code_length").d, chunk[ptype, ppos[1]].to("code_length").d, chunk[ptype, ppos[2]].to("code_length").d, chunk[ptype, "mass"].to("code_mass").d, chunk[ptype, "density"].to("code_density").d, chunk[ptype, "smoothing_length"].to("code_length").d, bounds, center.to("code_length").d, _width, periodic, chunk[item].in_units(ounits), buf, mask, normal_vector, north, weight_field=chunk[weight].in_units(wounits), depth=depth, kernel_name=kernel_name, ) for chunk in data_source.chunks([], "io"): off_axis_projection_SPH( chunk[ptype, ppos[0]].to("code_length").d, chunk[ptype, ppos[1]].to("code_length").d, chunk[ptype, ppos[2]].to("code_length").d, chunk[ptype, "mass"].to("code_mass").d, chunk[ptype, "density"].to("code_density").d, chunk[ptype, "smoothing_length"].to("code_length").d, bounds, center.to("code_length").d, _width, periodic, chunk[weight].to(wounits), weight_buff, mask, normal_vector, north, depth=depth, kernel_name=kernel_name, ) normalization_2d_utility(buf, weight_buff) item_unit = data_source.ds._get_field_info(item).units item_unit = Unit(item_unit, registry=data_source.ds.unit_registry) funits = item_unit myinfo = { "field": item, "east_vector": east_vector, "north_vector": north_vector, "normal_vector": normal_vector, "width": width, "depth": depth, "units": funits, "type": "SPH smoothed projection", } return ImageArray( buf, funits, registry=data_source.ds.unit_registry, info=myinfo ) sc = Scene() data_source.ds.index if item is None: field = data_source.ds.field_list[0] mylog.info("Setting default field to %s", field.__repr__()) funits = data_source.ds._get_field_info(item).units vol = KDTreeVolumeSource(data_source, item) vol.num_threads = num_threads if weight is None: vol.set_field(item) else: # This is a temporary field, which we will remove at the end. weightfield = ("index", "temp_weightfield") def _make_wf(f, w): def temp_weightfield(field, data): tr = data[f].astype("float64") * data[w] return tr.d return temp_weightfield data_source.ds.field_info.add_field( weightfield, sampling_type="cell", function=_make_wf(item, weight), units="", ) # Now we have to tell the dataset to add it and to calculate # its dependencies.. deps, _ = data_source.ds.field_info.check_derived_fields([weightfield]) data_source.ds.field_dependencies.update(deps) vol.set_field(weightfield) vol.set_weight_field(weight) ptf = ProjectionTransferFunction() vol.set_transfer_function(ptf) camera = sc.add_camera(data_source) camera.set_width(width) if not is_sequence(resolution): resolution = [resolution] * 2 camera.resolution = resolution if not is_sequence(width): width = data_source.ds.arr([width] * 3) normal = np.array(normal_vector) normal = normal / np.linalg.norm(normal) camera.position = center - width[2] * normal camera.focus = center # If north_vector is None, we set the default here. # This is chosen so that if normal_vector is one of the # cartesian coordinate axes, the projection will match # the corresponding on-axis projection. if north_vector is None: vecs = np.identity(3) t = np.cross(vecs, normal).sum(axis=1) ax = t.argmax() east_vector = np.cross(vecs[ax, :], normal).ravel() north = np.cross(normal, east_vector).ravel() else: north = np.array(north_vector) north = north / np.linalg.norm(north) camera.switch_orientation(normal, north) sc.add_source(vol) vol.set_sampler(camera, interpolated=False) assert vol.sampler is not None fields = [vol.field] if vol.weight_field is not None: fields.append(vol.weight_field) mylog.debug("Casting rays") index = data_source.ds.index lens = camera.lens # This implementation is optimized for octrees with plane-parallel lenses # and implicitely assumes that the cells are cubic. # NOTE: we should be able to relax the cubic assumption to a rectangular # assumption (if all cells have the same aspect ratio) with some # renormalization of the coordinates and the projection axes. # This is NOT done in the following. dom_width = data_source.ds.domain_width cubic_domain = dom_width.max() == dom_width.min() if ( isinstance(index, OctreeIndex) and isinstance(lens, PlaneParallelLens) and cubic_domain ): fields.extend(("index", k) for k in "xyz") fields.append(("index", "dx")) data_source.get_data(fields) # We need the width of the plot window in projected coordinates, # i.e. we ignore the z-component wmax = width[:2].max() # Normalize the positions & dx so that they are in the range [-0.5, 0.5] xyz = np.stack( [ ((data_source["index", k] - center[i]) / wmax).to("1").d for i, k in enumerate("xyz") ], axis=-1, ) for idim, periodic in enumerate(data_source.ds.periodicity): if not periodic: continue # Wrap into [-0.5, +0.5] xyz[..., idim] = (xyz[..., idim] + 0.5) % 1 - 0.5 dx = (data_source["index", "dx"] / wmax).to("1").d if vol.weight_field is None: weight_field = np.ones_like(dx) else: weight_field = data_source[vol.weight_field] projected_weighted_qty = np.zeros(resolution) projected_weight = np.zeros(resolution) add_cells_to_image_offaxis( Xp=xyz, dXp=dx, qty=data_source[vol.field], weight=weight_field, rotation=camera.inv_mat.T, buffer=projected_weighted_qty, buffer_weight=projected_weight, Nx=resolution[0], Ny=resolution[1], ) image = ImageArray( data_source.ds.arr( np.stack([projected_weighted_qty, projected_weight], axis=-1), "dimensionless", ), funits, registry=data_source.ds.unit_registry, info={"imtype": "rendering"}, ) else: for grid, mask in data_source.blocks: data = [] for f in fields: # strip units before multiplying by mask for speed grid_data = grid[f] units = grid_data.units data.append( data_source.ds.arr(grid_data.d * mask, units, dtype="float64") ) pg = PartitionedGrid( grid.id, data, mask.astype("uint8"), grid.LeftEdge, grid.RightEdge, grid.ActiveDimensions.astype("int64"), ) grid.clear_data() vol.sampler(pg, num_threads=num_threads) image = vol.finalize_image(camera, vol.sampler.aimage) image = ImageArray( image, funits, registry=data_source.ds.unit_registry, info=image.info ) if weight is not None: data_source.ds.field_info.pop(("index", "temp_weightfield")) if method == "integrate": if weight is None: dl = width[2].in_units(data_source.ds.unit_system["length"]) image *= dl else: mask = image[:, :, 1] == 0 nmask = np.logical_not(mask) image[:, :, 0][nmask] /= image[:, :, 1][nmask] image[mask] = 0 return image[:, :, 0]