Source code for yt.visualization.plot_modifications

import inspect
import re
import sys
import warnings
from abc import ABC, abstractmethod
from functools import update_wrapper
from numbers import Integral, Number
from typing import Any, TypeGuard

import matplotlib
import numpy as np
from unyt import unyt_quantity

from yt._maintenance.deprecation import issue_deprecation_warning
from yt._typing import AnyFieldKey, FieldKey
from yt.data_objects.data_containers import YTDataContainer
from yt.data_objects.level_sets.clump_handling import Clump
from yt.data_objects.selection_objects.cut_region import YTCutRegion
from yt.frontends.ytdata.data_structures import YTClumpContainer
from yt.funcs import is_sequence, mylog, validate_width_tuple
from yt.geometry.api import Geometry
from yt.geometry.unstructured_mesh_handler import UnstructuredIndex
from yt.units import dimensions
from yt.units._numpy_wrapper_functions import uhstack
from yt.units.yt_array import YTArray, YTQuantity
from yt.utilities.exceptions import (
    YTDataTypeUnsupported,
    YTFieldNotFound,
    YTFieldTypeNotFound,
    YTUnsupportedPlotCallback,
)
from yt.utilities.lib.geometry_utils import triangle_plane_intersect
from yt.utilities.lib.line_integral_convolution import line_integral_convolution_2d
from yt.utilities.lib.mesh_triangulation import triangulate_indices
from yt.utilities.lib.pixelization_routines import (
    pixelize_cartesian,
    pixelize_off_axis_cartesian,
)
from yt.utilities.math_utils import periodic_ray
from yt.visualization._commons import (
    _swap_arg_pair_order,
    _swap_axes_extents,
    invalidate_plot,
)
from yt.visualization.base_plot_types import CallbackWrapper
from yt.visualization.image_writer import apply_colormap
from yt.visualization.plot_window import PWViewerMPL

if sys.version_info >= (3, 11):
    from typing import assert_never
else:
    from typing_extensions import assert_never

callback_registry: dict[str, type["PlotCallback"]] = {}


def _validate_factor_tuple(factor) -> tuple[int, int]:
    if (
        is_sequence(factor)
        and len(factor) == 2
        and all(isinstance(_, Integral) for _ in factor)
    ):
        # - checking for "is_sequence" allows lists, numpy arrays and other containers
        # - checking for Integral type allows numpy integer types
        # in any case we return a with strict typing
        return (int(factor[0]), int(factor[1]))
    elif isinstance(factor, Integral):
        return (int(factor), int(factor))
    else:
        raise TypeError(
            f"Expected a single, or a pair of integers, received {factor!r}"
        )


[docs] class PlotCallback(ABC): # _supported_geometries is set by subclasses of PlotCallback to a tuple of # strings corresponding to the names of the geometries that a callback # supports. By default it is None, which means it supports everything. # Note that if there's a coord_system parameter that is set to "axis" or # "figure" this is disregarded. If "force" is included in the tuple, it # will *not* check whether or not the coord_system is in axis or figure, # and will only look at the geometries. _supported_geometries: tuple[str, ...] | None = None _incompatible_plot_types: tuple[str, ...] = () def __init_subclass__(cls, *args, **kwargs): if inspect.isabstract(cls): return # register class callback_registry[cls.__name__] = cls # create a PWViewerMPL method by wrapping __init__ if cls.__init__.__doc__ is None: # allow docstring definition at the class level instead of __init__ cls.__init__.__doc__ = cls.__doc__ supported_geometries = cls._supported_geometries incompatible_plot_types = cls._incompatible_plot_types type_name = cls._type_name @invalidate_plot def closure(self, *args, **kwargs): nonlocal supported_geometries nonlocal incompatible_plot_types nonlocal type_name geom = self.ds.geometry if not ( supported_geometries is None or geom in supported_geometries or ( kwargs.get("coord_system") in ("axis", "figure") and "force" not in supported_geometries ) ): raise YTDataTypeUnsupported(geom, supported_geometries) if self._plot_type in incompatible_plot_types: raise YTUnsupportedPlotCallback(type_name, self._plot_type) self._callbacks.append(cls(*args, **kwargs)) return self update_wrapper( wrapper=closure, wrapped=cls.__init__, assigned=("__annotations__", "__doc__"), ) method_name = "annotate_" + type_name closure.__name__ = method_name setattr(PWViewerMPL, method_name, closure) @abstractmethod def __init__(self, *args, **kwargs) -> None: pass @abstractmethod def __call__(self, plot: CallbackWrapper) -> Any: pass def _project_coords(self, plot, coord): """ Convert coordinates from simulation data coordinates to projected data coordinates. Simulation data coordinates are three dimensional, and can either be specified as a YTArray or as a list or array in code_length units. Projected data units are 2D versions of the simulation data units relative to the axes of the final plot. """ if len(coord) == 3: if not isinstance(coord, YTArray): coord_copy = plot.data.ds.arr(coord, "code_length") else: # coord is being copied so that if the user has a unyt_array already # we don't change the user's version coord_copy = coord.to("code_length") ax = plot.data.axis # if this is an on-axis projection or slice, then # just grab the appropriate 2 coords for the on-axis view if ax is not None: (xi, yi) = ( plot.data.ds.coordinates.x_axis[ax], plot.data.ds.coordinates.y_axis[ax], ) ret_coord = (coord_copy[xi], coord_copy[yi]) # if this is an off-axis project or slice (ie cutting plane) # we have to calculate where the data coords fall in the projected # plane else: # transpose is just to get [[x1,x2,...],[y1,y2,...],[z1,z2,...]] # in the same order as plot.data.center for array arithmetic coord_vectors = coord_copy.transpose() - plot.data.center x = np.dot(coord_vectors, plot.data.orienter.unit_vectors[1]) y = np.dot(coord_vectors, plot.data.orienter.unit_vectors[0]) # Transpose into image coords. Due to VR being not a # right-handed coord system ret_coord = (y, x) # if the position is already two-coords, it is expected to be # in the proper projected orientation else: raise ValueError("'data' coordinates must be 3 dimensions") return ret_coord def _convert_to_plot(self, plot, coord, offset=True): """ Convert coordinates from projected data coordinates to PlotWindow plot coordinates. Projected data coordinates are two dimensional and refer to the location relative to the specific axes being plotted, although still in simulation units. PlotWindow plot coordinates are locations as found in the final plot, usually with the origin in the center of the image and the extent of the image defined by the final plot axis markers. """ # coord should be a 2 x ncoord array-like datatype. try: ncoord = np.array(coord).shape[1] except IndexError: ncoord = 1 # Convert the data and plot limits to tiled numpy arrays so that # convert_to_plot is automatically vectorized. phy_bounds = self._physical_bounds(plot) x0, x1, y0, y1 = (np.array(np.tile(xyi, ncoord)) for xyi in phy_bounds) plt_bounds = self._plot_bounds(plot) xx0, xx1, yy0, yy1 = (np.tile(xyi, ncoord) for xyi in plt_bounds) try: ccoord = np.array(coord.to("code_length")) except AttributeError: ccoord = np.array(coord) # We need a special case for when we are only given one coordinate. if ccoord.shape == (2,): return np.array( [ ((ccoord[0] - x0) / (x1 - x0) * (xx1 - xx0) + xx0)[0], ((ccoord[1] - y0) / (y1 - y0) * (yy1 - yy0) + yy0)[0], ] ) else: return np.array( [ (ccoord[0][:] - x0) / (x1 - x0) * (xx1 - xx0) + xx0, (ccoord[1][:] - y0) / (y1 - y0) * (yy1 - yy0) + yy0, ] ) def _sanitize_coord_system(self, plot, coord, coord_system): """ Given a set of one or more x,y (and z) coordinates and a coordinate system, convert the coordinates (and transformation) ready for final plotting. Parameters ---------- plot: a PlotMPL subclass The plot that we are converting coordinates for coord: array-like Coordinates in some coordinate system: [x,y,z]. Alternatively, can specify multiple coordinates as: [[x1,x2,...,xn], [y1, y2,...,yn], [z1,z2,...,zn]] coord_system: string Possible values include: * ``'data'`` 3D data coordinates relative to original dataset * ``'plot'`` 2D coordinates as defined by the final axis locations * ``'axis'`` 2D coordinates within the axis object from (0,0) in lower left to (1,1) in upper right. Same as matplotlib axis coords. * ``'figure'`` 2D coordinates within figure object from (0,0) in lower left to (1,1) in upper right. Same as matplotlib figure coords. """ # Assure coords are either a YTArray or numpy array coord = np.asanyarray(coord, dtype="float64") # if in data coords, project them to plot coords if coord_system == "data": if len(coord) < 3: raise ValueError( "Coordinates in 'data' coordinate system need to be in 3D" ) coord = self._project_coords(plot, coord) coord = self._convert_to_plot(plot, coord) # if in plot coords, define the transform correctly if coord_system == "data" or coord_system == "plot": self.transform = plot._axes.transData return coord # if in axis coords, define the transform correctly if coord_system == "axis": self.transform = plot._axes.transAxes if len(coord) > 2: raise ValueError( "Coordinates in 'axis' coordinate system need to be in 2D" ) return coord # if in figure coords, define the transform correctly elif coord_system == "figure": self.transform = plot._figure.transFigure return coord else: raise ValueError( "Argument coord_system must have a value of " "'data', 'plot', 'axis', or 'figure'." ) def _physical_bounds(self, plot): xlims = tuple(v.in_units("code_length") for v in plot.xlim) ylims = tuple(v.in_units("code_length") for v in plot.ylim) # _swap_axes note: do NOT need to unswap here because plot (a CallbackWrapper # instance) stores the x, y lims of the underlying data object. return xlims + ylims def _plot_bounds(self, plot): xlims = plot._axes.get_xlim() ylims = plot._axes.get_ylim() # _swap_axes note: because we are getting the plot limits from the axes # object, if the axes have been swapped, these will be reversed from the # _physical_bounds. So we need to unswap here, but not in _physical_bounds. if plot._swap_axes: return ylims + xlims return xlims + ylims def _pixel_scale(self, plot): x0, x1, y0, y1 = self._physical_bounds(plot) xx0, xx1, yy0, yy1 = self._plot_bounds(plot) dx = (xx1 - xx0) / (x1 - x0) dy = (yy1 - yy0) / (y1 - y0) return dx, dy def _set_font_properties(self, plot, labels, **kwargs): """ This sets all of the text instances created by a callback to have the same font size and properties as all of the other fonts in the figure. If kwargs are set, they override the defaults. """ # This is a little messy because there is no trivial way to update # a MPL.font_manager.FontProperties object with new attributes # aside from setting them individually. So we pick out the relevant # MPL.Text() kwargs from the local kwargs and let them override the # defaults. local_font_properties = plot.font_properties.copy() # Turn off the default TT font file, otherwise none of this works. local_font_properties.set_file(None) local_font_properties.set_family("stixgeneral") if "family" in kwargs: local_font_properties.set_family(kwargs["family"]) if "file" in kwargs: local_font_properties.set_file(kwargs["file"]) if "fontconfig_pattern" in kwargs: local_font_properties.set_fontconfig_pattern(kwargs["fontconfig_pattern"]) if "name" in kwargs: local_font_properties.set_name(kwargs["name"]) if "size" in kwargs: local_font_properties.set_size(kwargs["size"]) if "slant" in kwargs: local_font_properties.set_slant(kwargs["slant"]) if "stretch" in kwargs: local_font_properties.set_stretch(kwargs["stretch"]) if "style" in kwargs: local_font_properties.set_style(kwargs["style"]) if "variant" in kwargs: local_font_properties.set_variant(kwargs["variant"]) if "weight" in kwargs: local_font_properties.set_weight(kwargs["weight"]) # For each label, set the font properties and color to the figure # defaults if not already set in the callback itself for label in labels: if plot.font_color is not None and "color" not in kwargs: label.set_color(plot.font_color) label.set_fontproperties(local_font_properties) def _set_plot_limits(self, plot, extent=None) -> None: """ calls set_xlim, set_ylim for plot, accounting for swapped axes Parameters ---------- plot : CallbackWrapper a CallbackWrapper instance extent : tuple or list The raw extent (prior to swapping). if None, will fetch it. """ if extent is None: extent = self._plot_bounds(plot) if plot._swap_axes: extent = _swap_axes_extents(extent) plot._axes.set_xlim(extent[0], extent[1]) plot._axes.set_ylim(extent[2], extent[3]) @staticmethod def _sanitize_xy_order(plot, *args): """ flips x-y pairs of plot arguments if needed Parameters ---------- plot : CallbackWrapper a CallbackWrapper instance *args x, y plot arguments, must have an even number of *args Returns ------- tuple either the original args or new args, with (x, y) pairs switched. i.e., _sanitize_xy_order(plot, x, y, px, py) returns: x, y, px, py if plot._swap_axes is False y, x, py, px if plot._swap_axes is True """ if plot._swap_axes: return _swap_arg_pair_order(*args) return args
[docs] class VelocityCallback(PlotCallback): """ Adds a 'quiver' plot of velocity to the plot, skipping all but every *factor* datapoint. *scale* is the data units per arrow length unit using *scale_units* and *plot_args* allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if *normalize* is True, the velocity fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength. """ _type_name = "velocity" _supported_geometries = ( "cartesian", "spectral_cube", "polar", "cylindrical", "spherical", ) _incompatible_plot_types = ("OffAxisProjection", "Particle") def __init__( self, factor: tuple[int, int] | int = 16, *, scale=None, scale_units=None, normalize=False, plot_args=None, **kwargs, ): self.factor = _validate_factor_tuple(factor) self.scale = scale self.scale_units = scale_units self.normalize = normalize if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) plot_args.update(kwargs) else: plot_args = kwargs self.plot_args = plot_args def __call__(self, plot) -> "BaseQuiverCallback": ftype = plot.data._current_fluid_type # Instantiation of these is cheap geometry: Geometry = plot.data.ds.geometry if plot._type_name == "CuttingPlane": if geometry is Geometry.CARTESIAN: pass elif ( geometry is Geometry.POLAR or geometry is Geometry.CYLINDRICAL or geometry is Geometry.SPHERICAL or geometry is Geometry.GEOGRAPHIC or geometry is Geometry.INTERNAL_GEOGRAPHIC or geometry is Geometry.SPECTRAL_CUBE ): raise NotImplementedError( f"annotate_velocity is not supported for cutting plane for {geometry=}" ) else: assert_never(geometry) qcb: BaseQuiverCallback if plot._type_name == "CuttingPlane": qcb = CuttingQuiverCallback( (ftype, "cutting_plane_velocity_x"), (ftype, "cutting_plane_velocity_y"), factor=self.factor, scale=self.scale, normalize=self.normalize, scale_units=self.scale_units, **self.plot_args, ) else: xax = plot.data.ds.coordinates.x_axis[plot.data.axis] yax = plot.data.ds.coordinates.y_axis[plot.data.axis] axis_names = plot.data.ds.coordinates.axis_name bv = plot.data.get_field_parameter("bulk_velocity") if bv is not None: bv_x = bv[xax] bv_y = bv[yax] else: bv_x = bv_y = 0 if geometry is Geometry.POLAR or geometry is Geometry.CYLINDRICAL: if axis_names[plot.data.axis] == "z": # polar_z and cyl_z is aligned with cartesian_z # should convert r-theta plane to x-y plane xv = (ftype, "velocity_cartesian_x") yv = (ftype, "velocity_cartesian_y") else: xv = (ftype, f"velocity_{axis_names[xax]}") yv = (ftype, f"velocity_{axis_names[yax]}") elif geometry is Geometry.SPHERICAL: if axis_names[plot.data.axis] == "phi": xv = (ftype, "velocity_cylindrical_radius") yv = (ftype, "velocity_cylindrical_z") elif axis_names[plot.data.axis] == "theta": xv = (ftype, "velocity_conic_x") yv = (ftype, "velocity_conic_y") else: raise NotImplementedError( f"annotate_velocity is missing support for normal={axis_names[plot.data.axis]!r}" ) elif geometry is Geometry.CARTESIAN: xv = (ftype, f"velocity_{axis_names[xax]}") yv = (ftype, f"velocity_{axis_names[yax]}") elif ( geometry is Geometry.GEOGRAPHIC or geometry is Geometry.INTERNAL_GEOGRAPHIC or geometry is Geometry.SPECTRAL_CUBE ): raise NotImplementedError( f"annotate_velocity is not supported for {geometry=}" ) else: assert_never(geometry) # determine the full fields including field type xv = plot.data._determine_fields(xv)[0] yv = plot.data._determine_fields(yv)[0] qcb = QuiverCallback( xv, yv, factor=self.factor, scale=self.scale, scale_units=self.scale_units, normalize=self.normalize, bv_x=bv_x, bv_y=bv_y, **self.plot_args, ) return qcb(plot)
[docs] class MagFieldCallback(PlotCallback): """ Adds a 'quiver' plot of magnetic field to the plot, skipping all but every *factor* datapoint. *scale* is the data units per arrow length unit using *scale_units* and *plot_args* allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if *normalize* is True, the magnetic fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength. """ _type_name = "magnetic_field" _supported_geometries = ( "cartesian", "spectral_cube", "polar", "cylindrical", "spherical", ) _incompatible_plot_types = ("OffAxisProjection", "Particle") def __init__( self, factor: tuple[int, int] | int = 16, *, scale=None, scale_units=None, normalize=False, plot_args=None, **kwargs, ): self.factor = _validate_factor_tuple(factor) self.scale = scale self.scale_units = scale_units self.normalize = normalize if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) plot_args.update(kwargs) else: plot_args = kwargs self.plot_args = plot_args def __call__(self, plot) -> "BaseQuiverCallback": ftype = plot.data._current_fluid_type # Instantiation of these is cheap geometry: Geometry = plot.data.ds.geometry qcb: BaseQuiverCallback if plot._type_name == "CuttingPlane": if geometry is Geometry.CARTESIAN: pass elif ( geometry is Geometry.POLAR or geometry is Geometry.CYLINDRICAL or geometry is Geometry.SPHERICAL or geometry is Geometry.GEOGRAPHIC or geometry is Geometry.INTERNAL_GEOGRAPHIC or geometry is Geometry.SPECTRAL_CUBE ): raise NotImplementedError( f"annotate_magnetic_field is not supported for cutting plane for {geometry=}" ) else: assert_never(geometry) qcb = CuttingQuiverCallback( (ftype, "cutting_plane_magnetic_field_x"), (ftype, "cutting_plane_magnetic_field_y"), factor=self.factor, scale=self.scale, scale_units=self.scale_units, normalize=self.normalize, **self.plot_args, ) else: xax = plot.data.ds.coordinates.x_axis[plot.data.axis] yax = plot.data.ds.coordinates.y_axis[plot.data.axis] axis_names = plot.data.ds.coordinates.axis_name if geometry is Geometry.POLAR or geometry is Geometry.CYLINDRICAL: if axis_names[plot.data.axis] == "z": # polar_z and cyl_z is aligned with cartesian_z # should convert r-theta plane to x-y plane xv = (ftype, "magnetic_field_cartesian_x") yv = (ftype, "magnetic_field_cartesian_y") else: xv = (ftype, f"magnetic_field_{axis_names[xax]}") yv = (ftype, f"magnetic_field_{axis_names[yax]}") elif geometry is Geometry.SPHERICAL: if axis_names[plot.data.axis] == "phi": xv = (ftype, "magnetic_field_cylindrical_radius") yv = (ftype, "magnetic_field_cylindrical_z") elif axis_names[plot.data.axis] == "theta": xv = (ftype, "magnetic_field_conic_x") yv = (ftype, "magnetic_field_conic_y") else: raise NotImplementedError( f"annotate_magnetic_field is missing support for normal={axis_names[plot.data.axis]!r}" ) elif geometry is Geometry.CARTESIAN: xv = (ftype, f"magnetic_field_{axis_names[xax]}") yv = (ftype, f"magnetic_field_{axis_names[yax]}") elif ( geometry is Geometry.GEOGRAPHIC or geometry is Geometry.INTERNAL_GEOGRAPHIC or geometry is Geometry.SPECTRAL_CUBE ): raise NotImplementedError( f"annotate_magnetic_field is not supported for {geometry=}" ) else: assert_never(geometry) qcb = QuiverCallback( xv, yv, factor=self.factor, scale=self.scale, scale_units=self.scale_units, normalize=self.normalize, **self.plot_args, ) return qcb(plot)
[docs] class BaseQuiverCallback(PlotCallback, ABC): _incompatible_plot_types = ("OffAxisProjection", "Particle") def __init__( self, field_x, field_y, field_c=None, *, factor: tuple[int, int] | int = 16, scale=None, scale_units=None, normalize=False, plot_args=None, **kwargs, ): self.field_x = field_x self.field_y = field_y self.field_c = field_c self.factor = _validate_factor_tuple(factor) self.scale = scale self.scale_units = scale_units self.normalize = normalize if plot_args is None: plot_args = kwargs else: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) plot_args.update(kwargs) self.plot_args = plot_args @abstractmethod def _get_quiver_data(self, plot, bounds: tuple, nx: int, ny: int): # must return (pixX, pixY, pixC) arrays (pixC can be None) pass def __call__(self, plot): # construct mesh bounds = self._physical_bounds(plot) nx = plot.raw_image_shape[1] // self.factor[0] ny = plot.raw_image_shape[0] // self.factor[1] xx0, xx1, yy0, yy1 = self._plot_bounds(plot) if plot._transform is None: X, Y = np.meshgrid( np.linspace(xx0, xx1, nx, endpoint=True), np.linspace(yy0, yy1, ny, endpoint=True), ) else: # when we have a cartopy transform, provide the x, y values # in the coordinate reference system of the data and let cartopy # do the transformation. Also check for the exact bounds of the transform # which can cause issues with projections. tform_bnds = plot._transform.x_limits + plot._transform.y_limits if any(b.d == tb for b, tb in zip(bounds, tform_bnds, strict=True)): # note: cartopy will also raise its own warning, but it is useful to add this # warning as well since the only way to avoid the exact bounds is to change the # extent of the plot. warnings.warn( "Using the exact bounds of the transform may cause errors at the bounds." " To avoid this warning, adjust the width of your plot object to not include " "the bounds.", stacklevel=2, ) X, Y = np.meshgrid( np.linspace(bounds[0].d, bounds[1].d, nx, endpoint=True), np.linspace(bounds[2].d, bounds[3].d, ny, endpoint=True), ) pixX, pixY, pixC = self._get_quiver_data(plot, bounds, nx, ny) retv = self._finalize(plot, X, Y, pixX, pixY, pixC) self._set_plot_limits(plot, (xx0, xx1, yy0, yy1)) return retv def _finalize(self, plot, X, Y, pixX, pixY, pixC): if self.normalize: nn = np.sqrt(pixX**2 + pixY**2) nn = np.where(nn == 0, 1, nn) pixX /= nn pixY /= nn X, Y, pixX, pixY = self._sanitize_xy_order(plot, X, Y, pixX, pixY) # quiver plots ignore x, y axes inversions when using angles="uv" (the # default), so reverse the direction of the vectors when flipping the axis. if self.plot_args.get("angles", None) != "xy": if plot._flip_vertical: pixY = -1 * pixY if plot._flip_horizontal: pixX = -1 * pixX args = [X, Y, pixX, pixY] if pixC is not None: args.append(pixC) kwargs = { "scale": self.scale, "scale_units": self.scale_units, } kwargs.update(self.plot_args) if plot._transform is not None: if "transform" in kwargs: msg = ( "The base plot already has a transform set, ignoring the provided keyword " "argument and using the base transform." ) warnings.warn(msg, stacklevel=2) kwargs["transform"] = plot._transform return plot._axes.quiver(*args, **kwargs)
[docs] class QuiverCallback(BaseQuiverCallback): """ Adds a 'quiver' plot to any plot, using the *field_x* and *field_y* from the associated data, skipping every *factor* pixels. *field_c* is an optional field name used for color. *scale* is the data units per arrow length unit using *scale_units* and *plot_args* allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if *normalize* is True, the fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength. """ _type_name = "quiver" _supported_geometries: tuple[str, ...] = ( "cartesian", "spectral_cube", "polar", "cylindrical", "spherical", "geographic", "internal_geographic", ) def __init__( self, field_x, field_y, field_c=None, *, factor: tuple[int, int] | int = 16, scale=None, scale_units=None, normalize=False, bv_x=0, bv_y=0, plot_args=None, **kwargs, ): super().__init__( field_x, field_y, field_c, factor=factor, scale=scale, scale_units=scale_units, normalize=normalize, plot_args=plot_args, **kwargs, ) self.bv_x = bv_x self.bv_y = bv_y def _get_quiver_data(self, plot, bounds: tuple, nx: int, ny: int): # calls the pixelizer, returns pixX, pixY, pixC arrays def transform(field_name, vector_value): field_units = plot.data[field_name].units def _transformed_field(field, data): return data[field_name] - data.ds.arr(vector_value, field_units) plot.data.ds.add_field( ("gas", f"transformed_{field_name}"), sampling_type="cell", function=_transformed_field, units=field_units, display_field=False, ) if self.bv_x != 0.0 or self.bv_x != 0.0: # We create a relative vector field transform(self.field_x, self.bv_x) transform(self.field_y, self.bv_y) field_x = f"transformed_{self.field_x}" field_y = f"transformed_{self.field_y}" else: field_x, field_y = self.field_x, self.field_y periodic = int(any(plot.data.ds.periodicity)) pixX = plot.data.ds.coordinates.pixelize( plot.data.axis, plot.data, field_x, bounds, (nx, ny), False, # antialias periodic, ) pixY = plot.data.ds.coordinates.pixelize( plot.data.axis, plot.data, field_y, bounds, (nx, ny), False, # antialias periodic, ) if self.field_c is not None: pixC = plot.data.ds.coordinates.pixelize( plot.data.axis, plot.data, self.field_c, bounds, (nx, ny), False, # antialias periodic, ) else: pixC = None return pixX, pixY, pixC
[docs] class ContourCallback(PlotCallback): """ Add contours in *field* to the plot. *levels* governs the number of contours generated, *factor* governs the number of points used in the interpolation, *take_log* governs how it is contoured and *clim* gives the (lower, upper) limits for contouring. An alternate data source can be specified with *data_source*, but by default the plot's data source will be queried. """ _type_name = "contour" _supported_geometries = ("cartesian", "spectral_cube", "cylindrical") _incompatible_plot_types = ("Particle",) def __init__( self, field: AnyFieldKey, levels: int = 5, *, factor: tuple[int, int] | int = 4, clim: tuple[float, float] | None = None, label: bool = False, take_log: bool | None = None, data_source: YTDataContainer | None = None, plot_args: dict[str, Any] | None = None, text_args: dict[str, Any] | None = None, ncont: int | None = None, # deprecated ) -> None: if ncont is not None: issue_deprecation_warning( "The `ncont` keyword argument is deprecated, use `levels` instead.", since="4.1", stacklevel=5, ) levels = ncont if clim is not None and not isinstance(levels, (int, np.integer)): raise TypeError(f"clim requires levels be an integer, received {levels}") self.levels = levels self.field = field self.factor = _validate_factor_tuple(factor) self.clim = clim self.take_log = take_log self.plot_args = { "colors": "black", "linestyles": "solid", **(plot_args or {}), } self.label = label self.text_args = { "colors": "white", **(text_args or {}), } self.data_source = data_source def __call__(self, plot) -> None: from matplotlib.tri import LinearTriInterpolator, Triangulation # These need to be in code_length x0, x1, y0, y1 = self._physical_bounds(plot) # These are in plot coordinates, which may not be code coordinates. xx0, xx1, yy0, yy1 = self._plot_bounds(plot) # See the note about rows/columns in the pixelizer for more information # on why we choose the bounds we do numPoints_x = plot.raw_image_shape[1] numPoints_y = plot.raw_image_shape[0] # Go from data->plot coordinates dx, dy = self._pixel_scale(plot) # We want xi, yi in plot coordinates xi, yi = np.mgrid[ xx0 : xx1 : numPoints_x / (self.factor[0] * 1j), yy0 : yy1 : numPoints_y / (self.factor[1] * 1j), ] data = self.data_source or plot.data if plot._type_name in ["CuttingPlane", "Projection", "Slice"]: if plot._type_name == "CuttingPlane": x = data["px"] * dx y = data["py"] * dy z = data[self.field] elif plot._type_name in ["Projection", "Slice"]: # Makes a copy of the position fields "px" and "py" and adds the # appropriate shift to the copied field. AllX = np.zeros(data["px"].size, dtype="bool") AllY = np.zeros(data["py"].size, dtype="bool") XShifted = data["px"].copy() YShifted = data["py"].copy() dom_x, dom_y = plot._period for shift in np.mgrid[-1:1:3j]: # type: ignore [misc] xlim = (data["px"] + shift * dom_x >= x0) & ( data["px"] + shift * dom_x <= x1 ) ylim = (data["py"] + shift * dom_y >= y0) & ( data["py"] + shift * dom_y <= y1 ) XShifted[xlim] += shift * dom_x YShifted[ylim] += shift * dom_y AllX |= xlim AllY |= ylim # At this point XShifted and YShifted are the shifted arrays of # position data in data coordinates wI = AllX & AllY # This converts XShifted and YShifted into plot coordinates x = ((XShifted[wI] - x0) * dx).ndarray_view() + xx0 y = ((YShifted[wI] - y0) * dy).ndarray_view() + yy0 z = data[self.field][wI] # Both the input and output from the triangulator are in plot # coordinates triangulation = Triangulation(x, y) zi = LinearTriInterpolator(triangulation, z)(xi, yi) elif plot._type_name == "OffAxisProjection": zi = plot.frb[self.field][:: self.factor[0], :: self.factor[1]].transpose() take_log: bool if self.take_log is not None: take_log = self.take_log else: field = data._determine_fields([self.field])[0] take_log = plot.ds._get_field_info(field).take_log if take_log: zi = np.log10(zi) clim: tuple[float, float] | None if take_log and self.clim is not None: clim = np.log10(self.clim[0]), np.log10(self.clim[1]) else: clim = self.clim levels: np.ndarray | int if clim is not None: levels = np.linspace(clim[0], clim[1], self.levels) else: levels = self.levels xi, yi = self._sanitize_xy_order(plot, xi, yi) cset = plot._axes.contour(xi, yi, zi, levels, **self.plot_args) self._set_plot_limits(plot, (xx0, xx1, yy0, yy1)) if self.label: plot._axes.clabel(cset, **self.text_args)
[docs] class GridBoundaryCallback(PlotCallback): """ Draws grids on an existing PlotWindow object. Adds grid boundaries to a plot, optionally with alpha-blending. By default, colors different levels of grids with different colors going from white to black, but you can change to any arbitrary colormap with cmap keyword, to all black grid edges for all levels with cmap=None and edgecolors=None, or to an arbitrary single color for grid edges with edgecolors='YourChosenColor' defined in any of the standard ways (e.g., edgecolors='white', edgecolors='r', edgecolors='#00FFFF', or edgecolor='0.3', where the last is a float in 0-1 scale indicating gray). Note that setting edgecolors overrides cmap if you have both set to non-None values. Cutoff for display is at min_pix wide. draw_ids puts the grid id a the corner of the grid (but its not so great in projections...). id_loc determines which corner holds the grid id. One can set min and maximum level of grids to display, and can change the linewidth of the displayed grids. """ _type_name = "grids" _supported_geometries = ("cartesian", "spectral_cube", "cylindrical") _incompatible_plot_types = ("OffAxisSlice", "OffAxisProjection", "Particle") def __init__( self, alpha=0.7, min_pix=1, min_pix_ids=20, draw_ids=False, id_loc=None, periodic=True, min_level=None, max_level=None, cmap="B-W LINEAR_r", edgecolors=None, linewidth=1.0, ): self.alpha = alpha self.min_pix = min_pix self.min_pix_ids = min_pix_ids self.draw_ids = draw_ids # put grid numbers in the corner. if id_loc is None: self.id_loc = "lower left" else: self.id_loc = id_loc.lower() # Make case-insensitive if not self.draw_ids: mylog.warning( "Supplied id_loc but draw_ids is False. Not drawing grid ids" ) self.periodic = periodic self.min_level = min_level self.max_level = max_level self.linewidth = linewidth self.cmap = cmap self.edgecolors = edgecolors def __call__(self, plot): if plot.data.ds.geometry == "cylindrical" and plot.data.ds.dimensionality == 3: raise NotImplementedError( "Grid annotation is only supported for \ for 2D cylindrical geometry, not 3D" ) from matplotlib.colors import colorConverter x0, x1, y0, y1 = self._physical_bounds(plot) xx0, xx1, yy0, yy1 = self._plot_bounds(plot) (dx, dy) = self._pixel_scale(plot) (ypix, xpix) = plot.raw_image_shape ax = plot.data.axis px_index = plot.data.ds.coordinates.x_axis[ax] py_index = plot.data.ds.coordinates.y_axis[ax] DW = plot.data.ds.domain_width if self.periodic: pxs, pys = np.mgrid[-1:1:3j, -1:1:3j] else: pxs, pys = np.mgrid[0:0:1j, 0:0:1j] GLE, GRE, levels, block_ids = [], [], [], [] for block, _mask in plot.data.blocks: GLE.append(block.LeftEdge.in_units("code_length")) GRE.append(block.RightEdge.in_units("code_length")) levels.append(block.Level) block_ids.append(block.id) if len(GLE) == 0: return # Retain both units and registry GLE = plot.ds.arr(GLE, units=GLE[0].units) GRE = plot.ds.arr(GRE, units=GRE[0].units) levels = np.array(levels) min_level = self.min_level or 0 max_level = self.max_level or levels.max() # sort the four arrays in order of ascending level, this makes images look nicer new_indices = np.argsort(levels) levels = levels[new_indices] GLE = GLE[new_indices] GRE = GRE[new_indices] block_ids = np.array(block_ids)[new_indices] for px_off, py_off in zip(pxs.ravel(), pys.ravel(), strict=True): pxo = px_off * DW[px_index] pyo = py_off * DW[py_index] left_edge_x = np.array((GLE[:, px_index] + pxo - x0) * dx) + xx0 left_edge_y = np.array((GLE[:, py_index] + pyo - y0) * dy) + yy0 right_edge_x = np.array((GRE[:, px_index] + pxo - x0) * dx) + xx0 right_edge_y = np.array((GRE[:, py_index] + pyo - y0) * dy) + yy0 xwidth = xpix * (right_edge_x - left_edge_x) / (xx1 - xx0) ywidth = ypix * (right_edge_y - left_edge_y) / (yy1 - yy0) visible = np.logical_and( np.logical_and(xwidth > self.min_pix, ywidth > self.min_pix), np.logical_and(levels >= min_level, levels <= max_level), ) # Grids can either be set by edgecolors OR a colormap. if self.edgecolors is not None: edgecolors = colorConverter.to_rgba(self.edgecolors, alpha=self.alpha) else: # use colormap if not explicitly overridden by edgecolors if self.cmap is not None: color_bounds = [0, max_level] edgecolors = ( apply_colormap( levels[visible] * 1.0, color_bounds=color_bounds, cmap_name=self.cmap, )[0, :, :] * 1.0 / 255.0 ) edgecolors[:, 3] = self.alpha else: edgecolors = (0.0, 0.0, 0.0, self.alpha) if visible.nonzero()[0].size == 0: continue edge_x = (left_edge_x, left_edge_x, right_edge_x, right_edge_x) edge_y = (left_edge_y, right_edge_y, right_edge_y, left_edge_y) edge_x, edge_y = self._sanitize_xy_order(plot, edge_x, edge_y) verts = np.array([edge_x, edge_y]) verts = verts.transpose()[visible, :, :] grid_collection = matplotlib.collections.PolyCollection( verts, facecolors="none", edgecolors=edgecolors, linewidth=self.linewidth, ) plot._axes.add_collection(grid_collection) visible_ids = np.logical_and( np.logical_and(xwidth > self.min_pix_ids, ywidth > self.min_pix_ids), np.logical_and(levels >= min_level, levels <= max_level), ) if self.draw_ids: plot_ids = np.where(visible_ids)[0] x = np.empty(plot_ids.size) y = np.empty(plot_ids.size) for i, n in enumerate(plot_ids): if self.id_loc == "lower left": x[i] = left_edge_x[n] + (2 * (xx1 - xx0) / xpix) y[i] = left_edge_y[n] + (2 * (yy1 - yy0) / ypix) elif self.id_loc == "lower right": x[i] = right_edge_x[n] - ( (10 * len(str(block_ids[i])) - 2) * (xx1 - xx0) / xpix ) y[i] = left_edge_y[n] + (2 * (yy1 - yy0) / ypix) elif self.id_loc == "upper left": x[i] = left_edge_x[n] + (2 * (xx1 - xx0) / xpix) y[i] = right_edge_y[n] - (12 * (yy1 - yy0) / ypix) elif self.id_loc == "upper right": x[i] = right_edge_x[n] - ( (10 * len(str(block_ids[i])) - 2) * (xx1 - xx0) / xpix ) y[i] = right_edge_y[n] - (12 * (yy1 - yy0) / ypix) else: raise RuntimeError( f"Unrecognized id_loc value ({self.id_loc!r}). " "Allowed values are 'lower left', lower right', " "'upper left', and 'upper right'." ) xi, yi = self._sanitize_xy_order(plot, x[i], y[i]) plot._axes.text(xi, yi, "%d" % block_ids[n], clip_on=True)
# when type-checking with MPL >= 3.8, use # from matplotlib.typing import ColorType _ColorType = Any
[docs] class StreamlineCallback(PlotCallback): """ Plot streamlines using matplotlib.axes.Axes.streamplot Arguments --------- field_x: field key The "velocity" analoguous field along the horizontal direction. field_y: field key The "velocity" analoguous field along the vertical direction. linewidth: float, or field key (default: 1.0) A constant scalar will be passed directly to matplotlib.axes.Axes.streamplot A field key will be first interpreted by yt and produce the adequate 2D array. Data fields are normalized by their maximum value, so the maximal linewidth is 1 by default. See `linewidth_upscaling` for fine tuning. Note that the absolute value is taken in all cases. linewidth_upscaling: float (default: 1.0) A constant multiplicative factor applied to linewidth. Final linewidth is obtained as: linewidth_upscaling * abs(linewidth) / max(abs(linewidth)) color: a color identifier, or a field key (default: matplotlib.rcParams['line.color']) A constant color identifier will be passed directly to matplotlib.axes.Axes.streamplot A field key will be first interpreted by yt and produce the adequate 2D array. See https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.streamplot.html for how to customize color mapping using `cmap` and `norm` arguments. color_threshold: float or unyt_quantity (default: -inf) Regions where the field used for color is lower than this threshold will be masked. Only used if color is a field key. factor: int, or tuple[int, int] (default: 16) Fields are downed-sampled by this factor with respect to the background image buffer size. A single integer factor will be used for both direction, but a tuple of 2 integers can be passed to set x and y downsampling independently. **kwargs: any additional keyword arguments will be passed directly to matplotlib.axes.Axes.streamplot """ _type_name = "streamlines" _supported_geometries = ( "cartesian", "spectral_cube", "polar", "cylindrical", "spherical", ) _incompatible_plot_types = ("OffAxisProjection", "Particle") def __init__( self, field_x: AnyFieldKey, field_y: AnyFieldKey, *, linewidth: float | AnyFieldKey = 1.0, linewidth_upscaling: float = 1.0, color: _ColorType | FieldKey | None = None, color_threshold: float | unyt_quantity = float("-inf"), factor: tuple[int, int] | int = 16, field_color=None, # deprecated display_threshold=None, # deprecated plot_args=None, # deprecated **kwargs, ): self.field_x = field_x self.field_y = field_y if color is not None and field_color is not None: raise TypeError( "`color` and `field_color` keyword arguments " "cannot be set at the same time." ) elif field_color is not None: issue_deprecation_warning( "The `field_color` keyword argument is deprecated. " "Use `color` instead.", since="4.3", stacklevel=5, ) self._color = field_color else: self._color = color if color_threshold is not None and display_threshold is not None: raise TypeError( "`color_threshold` and `display_threshold` keyword arguments " "cannot be set at the same time." ) elif display_threshold is not None: issue_deprecation_warning( "The `display_threshold` keyword argument is deprecated. " "Use `color_threshold` instead.", since="4.3", stacklevel=5, ) self._color_threshold = display_threshold else: self._color_threshold = color_threshold self._linewidth = linewidth self._linewidth_upscaling = linewidth_upscaling self.factor = _validate_factor_tuple(factor) if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) plot_args.update(kwargs) else: plot_args = kwargs self.plot_args = plot_args def __call__(self, plot) -> None: xx0, xx1, yy0, yy1 = self._plot_bounds(plot) # We are feeding this size into the pixelizer, where it will properly # set it in reverse order nx = plot.raw_image_shape[1] // self.factor[0] ny = plot.raw_image_shape[0] // self.factor[1] def pixelize(field): retv = plot.data.ds.coordinates.pixelize( plot.data.axis, plot.data, field=field, bounds=self._physical_bounds(plot), size=(nx, ny), ) if plot._swap_axes: return retv.transpose() else: return retv def is_field_key(val) -> TypeGuard[AnyFieldKey]: if not is_sequence(val): return False try: plot.data._determine_fields(val) except (YTFieldNotFound, YTFieldTypeNotFound): return False else: return True pixX = pixelize(self.field_x) pixY = pixelize(self.field_y) if isinstance(self._linewidth, (int, float)): linewidth = self._linewidth_upscaling * self._linewidth elif is_field_key(self._linewidth): linewidth = pixelize(self._linewidth) linewidth *= self._linewidth_upscaling / np.abs(linewidth).max() else: raise TypeError( f"annotate_streamlines received linewidth={self._linewidth!r}, " f"with type {type(self._linewidth)}. Expected a float or a field key." ) if is_field_key(self._color): color = pixelize(self._color) linewidth *= color > self._color_threshold else: if (_cmap := self.plot_args.get("cmap")) is not None: warnings.warn( f"annotate_streamlines received color={self._color!r}, " "which wasn't recognized as as field key. " "It is assumed to be a fixed color identifier. " f"Also received cmap={_cmap!r}, which will be ignored.", stacklevel=5, ) color = self._color X, Y = ( np.linspace(xx0, xx1, nx, endpoint=True), np.linspace(yy0, yy1, ny, endpoint=True), ) X, Y, pixX, pixY = self._sanitize_xy_order(plot, X, Y, pixX, pixY) if plot._swap_axes: # need an additional transpose here for streamline tracing X = X.transpose() Y = Y.transpose() streamplot_args = { "x": X, "y": Y, "u": pixX, "v": pixY, "color": color, "linewidth": linewidth, **self.plot_args, } plot._axes.streamplot(**streamplot_args) self._set_plot_limits(plot, (xx0, xx1, yy0, yy1))
[docs] class LinePlotCallback(PlotCallback): """ Overplot a line with endpoints at p1 and p2. p1 and p2 should be 2D or 3D coordinates consistent with the coordinate system denoted in the "coord_system" keyword. Parameters ---------- p1, p2 : 2- or 3-element tuples, lists, or arrays These are the coordinates of the endpoints of the line. coord_system : string, optional This string defines the coordinate system of the coordinates p1 and p2. Valid coordinates are: "data" -- the 3D dataset coordinates "plot" -- the 2D coordinates defined by the actual plot limits "axis" -- the MPL axis coordinates: (0,0) is lower left; (1,1) is upper right "figure" -- the MPL figure coordinates: (0,0) is lower left, (1,1) is upper right plot_args : dictionary, optional This dictionary is passed to the MPL plot function for generating the line. By default, it is: {'color':'white', 'linewidth':2} Examples -------- >>> # Overplot a diagonal white line from the lower left corner to upper >>> # right corner >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_line([0, 0], [1, 1], coord_system="axis") >>> s.save() >>> # Overplot a red dashed line from data coordinate (0.1, 0.2, 0.3) to >>> # (0.5, 0.6, 0.7) >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_line( ... [0.1, 0.2, 0.3], ... [0.5, 0.6, 0.7], ... coord_system="data", ... color="red", ... linestyles="--", ... ) >>> s.save() """ _type_name = "line" _supported_geometries: tuple[str, ...] = ( "cartesian", "spectral_cube", "polar", "cylindrical", ) def __init__( self, p1, p2, *, coord_system="data", plot_args: dict[str, Any] | None = None, **kwargs, ): self.p1 = p1 self.p2 = p2 if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) self.plot_args = { "color": "white", "linewidth": 2, **(plot_args or {}), **kwargs, } self.coord_system = coord_system self.transform = None def __call__(self, plot): p1 = self._sanitize_coord_system(plot, self.p1, coord_system=self.coord_system) p2 = self._sanitize_coord_system(plot, self.p2, coord_system=self.coord_system) start_pt, end_pt = [p1[0], p2[0]], [p1[1], p2[1]] if plot._swap_axes: start_pt, end_pt = [p2[0], p1[0]], [p2[1], p1[1]] plot._axes.plot(start_pt, end_pt, transform=self.transform, **self.plot_args) self._set_plot_limits(plot)
[docs] class CuttingQuiverCallback(BaseQuiverCallback): """ Get a quiver plot on top of a cutting plane, using *field_x* and *field_y*, skipping every *factor* datapoint in the discretization. *scale* is the data units per arrow length unit using *scale_units* and *plot_args* allows you to pass in matplotlib arguments (see matplotlib.axes.Axes.quiver for more info). if *normalize* is True, the fields will be scaled by their local (in-plane) length, allowing morphological features to be more clearly seen for fields with substantial variation in field strength. """ _type_name = "cquiver" _supported_geometries = ("cartesian", "spectral_cube") def _get_quiver_data(self, plot, bounds: tuple, nx: int, ny: int): # calls the pixelizer, returns pixX, pixY, pixC arrays indices = np.argsort(plot.data["index", "dx"])[::-1].astype(np.int_) pixX = np.zeros((ny, nx), dtype="f8") pixY = np.zeros((ny, nx), dtype="f8") pixelize_off_axis_cartesian( pixX, plot.data["index", "x"].to("code_length"), plot.data["index", "y"].to("code_length"), plot.data["index", "z"].to("code_length"), plot.data["px"], plot.data["py"], plot.data["pdx"], plot.data["pdy"], plot.data["pdz"], plot.data.center, plot.data._inv_mat, indices, plot.data[self.field_x], bounds, ) pixelize_off_axis_cartesian( pixY, plot.data["index", "x"].to("code_length"), plot.data["index", "y"].to("code_length"), plot.data["index", "z"].to("code_length"), plot.data["px"], plot.data["py"], plot.data["pdx"], plot.data["pdy"], plot.data["pdz"], plot.data.center, plot.data._inv_mat, indices, plot.data[self.field_y], bounds, ) if self.field_c is None: pixC = None else: pixC = np.zeros((ny, nx), dtype="f8") pixelize_off_axis_cartesian( pixC, plot.data["index", "x"].to("code_length"), plot.data["index", "y"].to("code_length"), plot.data["index", "z"].to("code_length"), plot.data["px"], plot.data["py"], plot.data["pdx"], plot.data["pdy"], plot.data["pdz"], plot.data.center, plot.data._inv_mat, indices, plot.data[self.field_c], bounds, ) return pixX, pixY, pixC
[docs] class ClumpContourCallback(PlotCallback): """ Take a list of *clumps* and plot them as a set of contours. """ _type_name = "clumps" _supported_geometries = ("cartesian", "spectral_cube", "cylindrical") _incompatible_plot_types = ("OffAxisSlice", "OffAxisProjection", "Particle") def __init__(self, clumps, *, plot_args=None, **kwargs): self.clumps = clumps if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) plot_args.update(kwargs) else: plot_args = kwargs if "color" in plot_args: plot_args["colors"] = plot_args.pop("color") self.plot_args = plot_args def __call__(self, plot): bounds = self._physical_bounds(plot) extent = self._plot_bounds(plot) ax = plot.data.axis px_index = plot.data.ds.coordinates.x_axis[ax] py_index = plot.data.ds.coordinates.y_axis[ax] xf = plot.data.ds.coordinates.axis_name[px_index] yf = plot.data.ds.coordinates.axis_name[py_index] dxf = f"d{xf}" dyf = f"d{yf}" ny, nx = plot.raw_image_shape buff = np.zeros((nx, ny), dtype="float64") for i, clump in enumerate(reversed(self.clumps)): mylog.info("Pixelizing contour %s", i) if isinstance(clump, Clump): ftype = "index" elif isinstance(clump, YTClumpContainer): ftype = "grid" else: raise RuntimeError( f"Unknown field type for object of type {type(clump)}." ) xf_copy = clump[ftype, xf].copy().in_units("code_length") yf_copy = clump[ftype, yf].copy().in_units("code_length") temp = np.zeros((ny, nx), dtype="f8") pixelize_cartesian( temp, xf_copy, yf_copy, clump[ftype, dxf].in_units("code_length") / 2.0, clump[ftype, dyf].in_units("code_length") / 2.0, clump[ftype, dxf].d * 0.0 + i + 1, # inits inside Pixelize bounds, 0, ) buff = np.maximum(temp, buff) if plot._swap_axes: buff = buff.transpose() extent = (extent[2], extent[3], extent[0], extent[1]) self.rv = plot._axes.contour( buff, np.unique(buff), extent=extent, **self.plot_args )
[docs] class ArrowCallback(PlotCallback): """ Overplot arrow(s) pointing at position(s) for highlighting specific features. By default, arrow points from lower left to the designated position "pos" with arrow length "length". Alternatively, if "starting_pos" is set, arrow will stretch from "starting_pos" to "pos" and "length" will be disregarded. "coord_system" keyword refers to positions set in "pos" arg and "starting_pos" keyword, which by default are in data coordinates. "length", "width", "head_length", and "head_width" keywords for the arrow are all in axis units, ie relative to the size of the plot axes as 1, even if the position of the arrow is set relative to another coordinate system. Parameters ---------- pos : array-like These are the coordinates where the marker(s) will be overplotted Either as [x,y,z] or as [[x1,x2,...],[y1,y2,...],[z1,z2,...]] length : float, optional The length, in axis units, of the arrow. Default: 0.03 width : float, optional The width, in axis units, of the tail line of the arrow. Default: 0.003 head_length : float, optional The length, in axis units, of the head of the arrow. If set to None, use 1.5*head_width Default: None head_width : float, optional The width, in axis units, of the head of the arrow. Default: 0.02 starting_pos : 2- or 3-element tuple, list, or array, optional These are the coordinates from which the arrow starts towards its point. Not compatible with 'length' kwarg. coord_system : string, optional This string defines the coordinate system of the coordinates of pos Valid coordinates are: "data" -- the 3D dataset coordinates "plot" -- the 2D coordinates defined by the actual plot limits "axis" -- the MPL axis coordinates: (0,0) is lower left; (1,1) is upper right "figure" -- the MPL figure coordinates: (0,0) is lower left, (1,1) is upper right plot_args : dictionary, optional This dictionary is passed to the MPL arrow function for generating the arrow. By default, it is: {'color':'white'} Examples -------- >>> # Overplot an arrow pointing to feature at data coord: (0.2, 0.3, 0.4) >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_arrow([0.2, 0.3, 0.4]) >>> s.save() >>> # Overplot a red arrow with longer length pointing to plot coordinate >>> # (0.1, -0.1) >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_arrow( ... [0.1, -0.1], length=0.06, coord_system="plot", color="red" ... ) >>> s.save() """ _type_name = "arrow" _supported_geometries = ("cartesian", "spectral_cube", "cylindrical") def __init__( self, pos, *, length=0.03, width=0.0001, head_width=0.01, head_length=0.01, starting_pos=None, coord_system="data", plot_args: dict[str, Any] | None = None, # deprecated **kwargs, ): self.pos = pos self.length = length self.width = width self.head_width = head_width self.head_length = head_length self.starting_pos = starting_pos self.coord_system = coord_system self.transform = None if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) self.plot_args = { "color": "white", **(plot_args or {}), **kwargs, } def __call__(self, plot): x, y = self._sanitize_coord_system( plot, self.pos, coord_system=self.coord_system ) xx0, xx1, yy0, yy1 = self._plot_bounds(plot) # normalize all of the kwarg lengths to the plot size plot_diag = ((yy1 - yy0) ** 2 + (xx1 - xx0) ** 2) ** (0.5) length = self.length * plot_diag width = self.width * plot_diag head_width = self.head_width * plot_diag head_length = None if self.head_length is not None: head_length = self.head_length * plot_diag if self.starting_pos is not None: start_x, start_y = self._sanitize_coord_system( plot, self.starting_pos, coord_system=self.coord_system ) dx = x - start_x dy = y - start_y else: dx = (xx1 - xx0) * 2 ** (0.5) * length dy = (yy1 - yy0) * 2 ** (0.5) * length # If the arrow is 0 length if dx == dy == 0: warnings.warn("The arrow has zero length. Not annotating.", stacklevel=2) return x, y, dx, dy = self._sanitize_xy_order(plot, x, y, dx, dy) try: plot._axes.arrow( x - dx, y - dy, dx, dy, width=width, head_width=head_width, head_length=head_length, transform=self.transform, length_includes_head=True, **self.plot_args, ) except ValueError: for i in range(len(x)): plot._axes.arrow( x[i] - dx, y[i] - dy, dx, dy, width=width, head_width=head_width, head_length=head_length, transform=self.transform, length_includes_head=True, **self.plot_args, ) self._set_plot_limits(plot, (xx0, xx1, yy0, yy1))
[docs] class MarkerAnnotateCallback(PlotCallback): """ Overplot marker(s) at a position(s) for highlighting specific features. Parameters ---------- pos : array-like These are the coordinates where the marker(s) will be overplotted Either as [x,y,z] or as [[x1,x2,...],[y1,y2,...],[z1,z2,...]] marker : string, optional The shape of the marker to be passed to the MPL scatter function. By default, it is 'x', but other acceptable values are: '.', 'o', 'v', '^', 's', 'p' '*', etc. See matplotlib.markers for more information. coord_system : string, optional This string defines the coordinate system of the coordinates of pos Valid coordinates are: "data" -- the 3D dataset coordinates "plot" -- the 2D coordinates defined by the actual plot limits "axis" -- the MPL axis coordinates: (0,0) is lower left; (1,1) is upper right "figure" -- the MPL figure coordinates: (0,0) is lower left, (1,1) is upper right plot_args : dictionary, optional This dictionary is passed to the MPL scatter function for generating the marker. By default, it is: {'color':'white', 's':50} Examples -------- >>> # Overplot a white X on a feature at data location (0.5, 0.5, 0.5) >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_marker([0.4, 0.5, 0.6]) >>> s.save() >>> # Overplot a big yellow circle at axis location (0.1, 0.2) >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_marker( ... [0.1, 0.2], ... marker="o", ... coord_system="axis", ... color="yellow", ... s=200, ... ) >>> s.save() """ _type_name = "marker" _supported_geometries = ("cartesian", "spectral_cube", "polar", "cylindrical") def __init__( self, pos, marker="x", *, coord_system="data", plot_args=None, **kwargs ): self.pos = pos self.marker = marker if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) self.plot_args = { "color": "white", "s": 50, **(plot_args or {}), **kwargs, } self.coord_system = coord_system self.transform = None def __call__(self, plot): x, y = self._sanitize_coord_system( plot, self.pos, coord_system=self.coord_system ) x, y = self._sanitize_xy_order(plot, x, y) plot._axes.scatter( x, y, marker=self.marker, transform=self.transform, **self.plot_args ) self._set_plot_limits(plot)
[docs] class SphereCallback(PlotCallback): """ Overplot a circle with designated center and radius with optional text. Parameters ---------- center : 2- or 3-element tuple, list, or array These are the coordinates where the circle will be overplotted radius : YTArray, float, or (1, ('kpc')) style tuple The radius of the circle in code coordinates circle_args : dict, optional This dictionary is passed to the MPL circle object. By default, {'color':'white'} coord_system : string, optional This string defines the coordinate system of the coordinates of pos Valid coordinates are: "data" -- the 3D dataset coordinates "plot" -- the 2D coordinates defined by the actual plot limits "axis" -- the MPL axis coordinates: (0,0) is lower left; (1,1) is upper right "figure" -- the MPL figure coordinates: (0,0) is lower left, (1,1) is upper right text : string, optional Optional text to include next to the circle. text_args : dictionary, optional This dictionary is passed to the MPL text function. By default, it is: {'color':'white'} Examples -------- >>> # Overplot a white circle of radius 100 kpc over the central galaxy >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_sphere([0.5, 0.5, 0.5], radius=(100, "kpc")) >>> s.save() """ _type_name = "sphere" _supported_geometries = ("cartesian", "spectral_cube", "polar", "cylindrical") def __init__( self, center, radius, *, coord_system="data", text=None, circle_args=None, text_args=None, ): self.center = center self.radius = radius self.circle_args = { "color": "white", "fill": False, **(circle_args or {}), } self.text = text self.text_args = { "color": "white", **(text_args or {}), } self.coord_system = coord_system self.transform = None def __call__(self, plot): from matplotlib.patches import Circle if is_sequence(self.radius): self.radius = plot.data.ds.quan(self.radius[0], self.radius[1]) self.radius = self.radius.in_units(plot.xlim[0].units) if isinstance(self.radius, YTQuantity): if isinstance(self.center, YTArray): units = self.center.units else: units = "code_length" self.radius = self.radius.to(units) # This assures the radius has the appropriate size in # the different coordinate systems, since one cannot simply # apply a different transform for a length in the same way # you can for a coordinate. if self.coord_system == "data" or self.coord_system == "plot": scaled_radius = self.radius * self._pixel_scale(plot)[0] else: scaled_radius = self.radius / (plot.xlim[1] - plot.xlim[0]) x, y = self._sanitize_coord_system( plot, self.center, coord_system=self.coord_system ) x, y = self._sanitize_xy_order(plot, x, y) cir = Circle( (x, y), scaled_radius.v, transform=self.transform, **self.circle_args ) plot._axes.add_patch(cir) if self.text is not None: label = plot._axes.text( x, y, self.text, transform=self.transform, **self.text_args ) self._set_font_properties(plot, [label], **self.text_args) self._set_plot_limits(plot)
[docs] class TextLabelCallback(PlotCallback): """ Overplot text on the plot at a specified position. If you desire an inset box around your text, set one with the inset_box_args dictionary keyword. Parameters ---------- pos : 2- or 3-element tuple, list, or array These are the coordinates where the text will be overplotted text : string The text you wish to include coord_system : string, optional This string defines the coordinate system of the coordinates of pos Valid coordinates are: "data" -- the 3D dataset coordinates "plot" -- the 2D coordinates defined by the actual plot limits "axis" -- the MPL axis coordinates: (0,0) is lower left; (1,1) is upper right "figure" -- the MPL figure coordinates: (0,0) is lower left, (1,1) is upper right text_args : dictionary, optional This dictionary is passed to the MPL text function for generating the text. By default, it is: {'color':'white'} and uses the defaults for the other fonts in the image. inset_box_args : dictionary, optional A dictionary of any arbitrary parameters to be passed to the Matplotlib FancyBboxPatch object as the inset box around the text. Default: {} Examples -------- >>> # Overplot white text at data location [0.55, 0.7, 0.4] >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_text([0.55, 0.7, 0.4], "Here is a galaxy") >>> s.save() >>> # Overplot yellow text at axis location [0.2, 0.8] with >>> # a shaded inset box >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_text( ... [0.2, 0.8], ... "Here is a galaxy", ... coord_system="axis", ... text_args={"color": "yellow"}, ... inset_box_args={ ... "boxstyle": "square,pad=0.3", ... "facecolor": "black", ... "linewidth": 3, ... "edgecolor": "white", ... "alpha": 0.5, ... }, ... ) >>> s.save() """ _type_name = "text" _supported_geometries: tuple[str, ...] = ( "cartesian", "spectral_cube", "polar", "cylindrical", ) def __init__( self, pos, text, *, coord_system="data", text_args=None, inset_box_args=None, ): self.pos = pos self.text = text self.text_args = { "color": "white", **(text_args or {}), } self.inset_box_args = inset_box_args self.coord_system = coord_system self.transform = None def __call__(self, plot): kwargs = self.text_args.copy() x, y = self._sanitize_coord_system( plot, self.pos, coord_system=self.coord_system ) # Set the font properties of text from this callback to be # consistent with other text labels in this figure if self.inset_box_args is not None: kwargs["bbox"] = self.inset_box_args x, y = self._sanitize_xy_order(plot, x, y) label = plot._axes.text(x, y, self.text, transform=self.transform, **kwargs) self._set_font_properties(plot, [label], **kwargs) self._set_plot_limits(plot)
[docs] class ParticleCallback(PlotCallback): """ Adds particle positions, based on a thick slab along *axis* with a *width* along the line of sight. *p_size* controls the number of pixels per particle, and *col* governs the color. *ptype* will restrict plotted particles to only those that are of a given type. *alpha* determines the opacity of the marker symbol used in the scatter. An alternate data source can be specified with *data_source*, but by default the plot's data source will be queried. """ _type_name = "particles" region = None _descriptor = None _supported_geometries = ("cartesian", "spectral_cube", "cylindrical") _incompatible_plot_types = ("OffAxisSlice", "OffAxisProjection") def __init__( self, width, p_size=1.0, col="k", marker="o", stride=1, ptype="all", alpha=1.0, data_source=None, ): self.width = width self.p_size = p_size self.color = col self.marker = marker self.stride = stride self.ptype = ptype self.alpha = alpha self.data_source = data_source def __call__(self, plot): data = plot.data if is_sequence(self.width): validate_width_tuple(self.width) self.width = plot.data.ds.quan(self.width[0], self.width[1]) elif isinstance(self.width, YTQuantity): self.width = plot.data.ds.quan(self.width.value, self.width.units) else: self.width = plot.data.ds.quan(self.width, "code_length") # we construct a rectangular prism x0, x1, y0, y1 = self._physical_bounds(plot) if isinstance(self.data_source, YTCutRegion): mylog.warning( "Parameter 'width' is ignored in annotate_particles if the " "data_source is a cut_region. " "See https://github.com/yt-project/yt/issues/1933 for further details." ) self.region = self.data_source else: self.region = self._get_region((x0, x1), (y0, y1), plot.data.axis, data) ax = data.axis xax = plot.data.ds.coordinates.x_axis[ax] yax = plot.data.ds.coordinates.y_axis[ax] axis_names = plot.data.ds.coordinates.axis_name field_x = f"particle_position_{axis_names[xax]}" field_y = f"particle_position_{axis_names[yax]}" pt = self.ptype self.periodic_x = plot.data.ds.periodicity[xax] self.periodic_y = plot.data.ds.periodicity[yax] self.LE = plot.data.ds.domain_left_edge[xax], plot.data.ds.domain_left_edge[yax] self.RE = ( plot.data.ds.domain_right_edge[xax], plot.data.ds.domain_right_edge[yax], ) period_x = plot.data.ds.domain_width[xax] period_y = plot.data.ds.domain_width[yax] particle_x, particle_y = self._enforce_periodic( self.region[pt, field_x], self.region[pt, field_y], x0, x1, period_x, y0, y1, period_y, ) gg = ( (particle_x >= x0) & (particle_x <= x1) & (particle_y >= y0) & (particle_y <= y1) ) px, py = [particle_x[gg][:: self.stride], particle_y[gg][:: self.stride]] px, py = self._convert_to_plot(plot, [px, py]) px, py = self._sanitize_xy_order(plot, px, py) plot._axes.scatter( px, py, edgecolors="None", marker=self.marker, s=self.p_size, c=self.color, alpha=self.alpha, ) self._set_plot_limits(plot) def _enforce_periodic( self, particle_x, particle_y, x0, x1, period_x, y0, y1, period_y ): # duplicate particles if periodic in that direction AND if the plot # extends outside the domain boundaries. if self.periodic_x and x0 > self.RE[0]: particle_x = uhstack((particle_x, particle_x + period_x)) particle_y = uhstack((particle_y, particle_y)) if self.periodic_x and x1 < self.LE[0]: particle_x = uhstack((particle_x, particle_x - period_x)) particle_y = uhstack((particle_y, particle_y)) if self.periodic_y and y0 > self.RE[1]: particle_y = uhstack((particle_y, particle_y + period_y)) particle_x = uhstack((particle_x, particle_x)) if self.periodic_y and y1 < self.LE[1]: particle_y = uhstack((particle_y, particle_y - period_y)) particle_x = uhstack((particle_x, particle_x)) return particle_x, particle_y def _get_region(self, xlim, ylim, axis, data): LE, RE = [None] * 3, [None] * 3 ds = data.ds xax = ds.coordinates.x_axis[axis] yax = ds.coordinates.y_axis[axis] zax = axis LE[xax], RE[xax] = xlim LE[yax], RE[yax] = ylim LE[zax] = data.center[zax] - self.width * 0.5 LE[zax].convert_to_units("code_length") RE[zax] = LE[zax] + self.width if ( self.region is not None and np.all(self.region.left_edge <= LE) and np.all(self.region.right_edge >= RE) ): return self.region self.region = data.ds.region(data.center, LE, RE, data_source=self.data_source) return self.region
[docs] class TitleCallback(PlotCallback): """ Accepts a *title* and adds it to the plot """ _type_name = "title" def __init__(self, title): self.title = title def __call__(self, plot): plot._axes.set_title(self.title) # Set the font properties of text from this callback to be # consistent with other text labels in this figure label = plot._axes.title self._set_font_properties(plot, [label])
[docs] class MeshLinesCallback(PlotCallback): """ Adds mesh lines to the plot. Only works for unstructured or semi-structured mesh data. For structured grid data, see GridBoundaryCallback or CellEdgesCallback. Parameters ---------- plot_args: dict, optional A dictionary of arguments that will be passed to matplotlib. Example ------- >>> import yt >>> ds = yt.load("MOOSE_sample_data/out.e-s010") >>> sl = yt.SlicePlot(ds, "z", ("connect2", "convected")) >>> sl.annotate_mesh_lines(color="black") """ _type_name = "mesh_lines" _supported_geometries = ("cartesian", "spectral_cube") _incompatible_plot_types = ("OffAxisSlice", "OffAxisProjection") def __init__(self, *, plot_args=None, **kwargs): if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) plot_args.update(kwargs) else: plot_args = kwargs self.plot_args = plot_args
[docs] def promote_2d_to_3d(self, coords, indices, plot): new_coords = np.zeros((2 * coords.shape[0], 3)) new_connects = np.zeros( (indices.shape[0], 2 * indices.shape[1]), dtype=np.int64 ) new_coords[0 : coords.shape[0], 0:2] = coords new_coords[0 : coords.shape[0], 2] = plot.ds.domain_left_edge[2] new_coords[coords.shape[0] :, 0:2] = coords new_coords[coords.shape[0] :, 2] = plot.ds.domain_right_edge[2] new_connects[:, 0 : indices.shape[1]] = indices new_connects[:, indices.shape[1] :] = indices + coords.shape[0] return new_coords, new_connects
def __call__(self, plot): index = plot.ds.index if not issubclass(type(index), UnstructuredIndex): raise RuntimeError( "Mesh line annotations only work for " "unstructured or semi-structured mesh data." ) for i, m in enumerate(index.meshes): try: ftype, fname = plot.field if ftype.startswith("connect") and int(ftype[-1]) - 1 != i: continue except ValueError: pass coords = m.connectivity_coords indices = m.connectivity_indices - m._index_offset num_verts = indices.shape[1] num_dims = coords.shape[1] if num_dims == 2 and num_verts == 3: coords, indices = self.promote_2d_to_3d(coords, indices, plot) elif num_dims == 2 and num_verts == 4: coords, indices = self.promote_2d_to_3d(coords, indices, plot) tri_indices = triangulate_indices(indices.astype(np.int_)) points = coords[tri_indices] tfc = TriangleFacetsCallback(points, **self.plot_args) tfc(plot)
[docs] class TriangleFacetsCallback(PlotCallback): """ Intended for representing a slice of a triangular faceted geometry in a slice plot. Uses a set of *triangle_vertices* to find all triangles the plane of a SlicePlot intersects with. The lines between the intersection points of the triangles are then added to the plot to create an outline of the geometry represented by the triangles. """ _type_name = "triangle_facets" _supported_geometries = ("cartesian", "spectral_cube") def __init__(self, triangle_vertices, *, plot_args=None, **kwargs): if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) plot_args.update(kwargs) else: plot_args = kwargs self.plot_args = kwargs self.vertices = triangle_vertices def __call__(self, plot): ax = plot.data.axis xax = plot.data.ds.coordinates.x_axis[ax] yax = plot.data.ds.coordinates.y_axis[ax] if not hasattr(self.vertices, "in_units"): vertices = plot.data.pf.arr(self.vertices, "code_length") else: vertices = self.vertices l_cy = triangle_plane_intersect(plot.data.axis, plot.data.coord, vertices)[ :, :, (xax, yax) ] # l_cy is shape (nlines, 2, 2) # reformat for conversion to plot coordinates l_cy = np.rollaxis(l_cy, 0, 3) # shape is now (2, 2, nlines) # convert all line starting points l_cy[0] = self._convert_to_plot(plot, l_cy[0]) # convert all line ending points l_cy[1] = self._convert_to_plot(plot, l_cy[1]) if plot._swap_axes: # more convenient to swap the x, y values here before final roll x0, y0 = l_cy[0] # x, y values of start points x1, y1 = l_cy[1] # x, y values of end points l_cy[0] = np.vstack([y0, x0]) # swap x, y for start points l_cy[1] = np.vstack([y1, x1]) # swap x, y for end points # convert back to shape (nlines, 2, 2) l_cy = np.rollaxis(l_cy, 2, 0) # create line collection and add it to the plot lc = matplotlib.collections.LineCollection(l_cy, **self.plot_args) plot._axes.add_collection(lc)
[docs] class TimestampCallback(PlotCallback): r""" Annotates the timestamp and/or redshift of the data output at a specified location in the image (either in a present corner, or by specifying (x,y) image coordinates with the x_pos, y_pos arguments. If no time_units are specified, it will automatically choose appropriate units. It allows for custom formatting of the time and redshift information, as well as the specification of an inset box around the text. Parameters ---------- x_pos, y_pos : floats, optional The image location of the timestamp in the coord system defined by the coord_system kwarg. Setting x_pos and y_pos overrides the corner parameter. corner : string, optional Corner sets up one of 4 predeterimined locations for the timestamp to be displayed in the image: 'upper_left', 'upper_right', 'lower_left', 'lower_right' (also allows None). This value will be overridden by the optional x_pos and y_pos keywords. time : boolean, optional Whether or not to show the ds.current_time of the data output. Can be used solo or in conjunction with redshift parameter. redshift : boolean, optional Whether or not to show the ds.current_time of the data output. Can be used solo or in conjunction with the time parameter. time_format : string, optional This specifies the format of the time output assuming "time" is the number of time and "unit" is units of the time (e.g. 's', 'Myr', etc.) The time can be specified to arbitrary precision according to printf formatting codes (defaults to .1f -- a float with 1 digits after decimal). Example: "Age = {time:.2f} {units}". time_unit : string, optional time_unit must be a valid yt time unit (e.g. 's', 'min', 'hr', 'yr', 'Myr', etc.) redshift_format : string, optional This specifies the format of the redshift output. The redshift can be specified to arbitrary precision according to printf formatting codes (defaults to 0.2f -- a float with 2 digits after decimal). Example: "REDSHIFT = {redshift:03.3g}", draw_inset_box : boolean, optional Whether or not an inset box should be included around the text If so, it uses the inset_box_args to set the matplotlib FancyBboxPatch object. coord_system : string, optional This string defines the coordinate system of the coordinates of pos Valid coordinates are: - "data": 3D dataset coordinates - "plot": 2D coordinates defined by the actual plot limits - "axis": MPL axis coordinates: (0,0) is lower left; (1,1) is upper right - "figure": MPL figure coordinates: (0,0) is lower left, (1,1) is upper right time_offset : float, (value, unit) tuple, or YTQuantity, optional Apply an offset to the time shown in the annotation from the value of the current time. If a scalar value with no units is passed in, the value of the *time_unit* kwarg is used for the units. Default: None, meaning no offset. text_args : dictionary, optional A dictionary of any arbitrary parameters to be passed to the Matplotlib text object. Defaults: ``{'color':'white', 'horizontalalignment':'center', 'verticalalignment':'top'}``. inset_box_args : dictionary, optional A dictionary of any arbitrary parameters to be passed to the Matplotlib FancyBboxPatch object as the inset box around the text. Defaults: ``{'boxstyle':'square', 'pad':0.3, 'facecolor':'black', 'linewidth':3, 'edgecolor':'white', 'alpha':0.5}`` Example ------- >>> import yt >>> ds = yt.load("Enzo_64/DD0020/data0020") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_timestamp() """ _type_name = "timestamp" _supported_geometries = ( "cartesian", "spectral_cube", "cylindrical", "polar", "spherical", ) def __init__( self, x_pos=None, y_pos=None, corner="lower_left", *, time=True, redshift=False, time_format="t = {time:.1f} {units}", time_unit=None, redshift_format="z = {redshift:.2f}", draw_inset_box=False, coord_system="axis", time_offset=None, text_args=None, inset_box_args=None, ): # Set position based on corner argument. self.pos = (x_pos, y_pos) self.corner = corner self.time = time self.redshift = redshift self.time_format = time_format self.redshift_format = redshift_format self.time_unit = time_unit self.coord_system = coord_system self.time_offset = time_offset self.text_args = { "color": "white", "horizontalalignment": "center", "verticalalignment": "top", **(text_args or {}), } if draw_inset_box: self.inset_box_args = { "boxstyle": "square,pad=0.3", "facecolor": "black", "linewidth": 3, "edgecolor": "white", "alpha": 0.5, **(inset_box_args or {}), } else: self.inset_box_args = None def __call__(self, plot): # Setting pos overrides corner argument if self.pos[0] is None or self.pos[1] is None: if self.corner == "upper_left": self.pos = (0.03, 0.96) self.text_args["horizontalalignment"] = "left" self.text_args["verticalalignment"] = "top" elif self.corner == "upper_right": self.pos = (0.97, 0.96) self.text_args["horizontalalignment"] = "right" self.text_args["verticalalignment"] = "top" elif self.corner == "lower_left": self.pos = (0.03, 0.03) self.text_args["horizontalalignment"] = "left" self.text_args["verticalalignment"] = "bottom" elif self.corner == "lower_right": self.pos = (0.97, 0.03) self.text_args["horizontalalignment"] = "right" self.text_args["verticalalignment"] = "bottom" elif self.corner is None: self.pos = (0.5, 0.5) self.text_args["horizontalalignment"] = "center" self.text_args["verticalalignment"] = "center" else: raise ValueError( "Argument 'corner' must be set to " "'upper_left', 'upper_right', 'lower_left', " "'lower_right', or None" ) self.text = "" # If we're annotating the time, put it in the correct format if self.time: # If no time_units are set, then identify a best fit time unit if self.time_unit is None: if plot.ds._uses_code_time_unit: # if the unit system is in code units # we should not convert to seconds for the plot. self.time_unit = plot.ds.unit_system.base_units[dimensions.time] else: # in the case of non- code units then we self.time_unit = plot.ds.get_smallest_appropriate_unit( plot.ds.current_time, quantity="time" ) t = plot.ds.current_time.in_units(self.time_unit) if self.time_offset is not None: if isinstance(self.time_offset, tuple): toffset = plot.ds.quan(self.time_offset[0], self.time_offset[1]) elif isinstance(self.time_offset, Number): toffset = plot.ds.quan(self.time_offset, self.time_unit) elif not isinstance(self.time_offset, YTQuantity): raise RuntimeError( "'time_offset' must be a float, tuple, or YTQuantity!" ) t -= toffset.in_units(self.time_unit) try: # here the time unit will be in brackets on the annotation. un = self.time_unit.latex_representation() time_unit = r"$\ \ (" + un + r")$" except AttributeError: time_unit = str(self.time_unit).replace("_", " ") self.text += self.time_format.format(time=float(t), units=time_unit) # If time and redshift both shown, do one on top of the other if self.time and self.redshift: self.text += "\n" if self.redshift and not hasattr(plot.data.ds, "current_redshift"): warnings.warn( f"dataset {plot.data.ds} does not have current_redshift attribute. " "Set redshift=False to silence this warning.", stacklevel=2, ) self.redshift = False # If we're annotating the redshift, put it in the correct format if self.redshift: z = plot.data.ds.current_redshift # Replace instances of -0.0* with 0.0* to avoid # negative null redshifts (e.g., "-0.00"). self.text += self.redshift_format.format(redshift=float(z)) self.text = re.sub("-(0.0*)$", r"\g<1>", self.text) # This is just a fancy wrapper around the TextLabelCallback tcb = TextLabelCallback( self.pos, self.text, coord_system=self.coord_system, text_args=self.text_args, inset_box_args=self.inset_box_args, ) return tcb(plot)
[docs] class ScaleCallback(PlotCallback): r""" Annotates the scale of the plot at a specified location in the image (either in a preset corner, or by specifying (x,y) image coordinates with the pos argument. Coeff and units (e.g. 1 Mpc or 100 kpc) refer to the distance scale you desire to show on the plot. If no coeff and units are specified, an appropriate pair will be determined such that your scale bar is never smaller than min_frac or greater than max_frac of your plottable axis length. Additional customization of the scale bar is possible by adjusting the text_args and size_bar_args dictionaries. The text_args dictionary accepts matplotlib's font_properties arguments to override the default font_properties for the current plot. The size_bar_args dictionary accepts keyword arguments for the AnchoredSizeBar class in matplotlib's axes_grid toolkit. Parameters ---------- corner : string, optional Corner sets up one of 4 predeterimined locations for the scale bar to be displayed in the image: 'upper_left', 'upper_right', 'lower_left', 'lower_right' (also allows None). This value will be overridden by the optional 'pos' keyword. coeff : float, optional The coefficient of the unit defining the distance scale (e.g. 10 kpc or 100 Mpc) for overplotting. If set to None along with unit keyword, coeff will be automatically determined to be a power of 10 relative to the best-fit unit. unit : string, optional unit must be a valid yt distance unit (e.g. 'm', 'km', 'AU', 'pc', 'kpc', etc.) or set to None. If set to None, will be automatically determined to be the best-fit to the data. pos : 2- or 3-element tuples, lists, or arrays, optional The image location of the scale bar in the plot coordinate system. Setting pos overrides the corner parameter. min_frac, max_frac: float, optional The minimum/maximum fraction of the axis width for the scale bar to extend. A value of 1 would allow the scale bar to extend across the entire axis width. Only used for automatically calculating best-fit coeff and unit when neither is specified, otherwise disregarded. coord_system : string, optional This string defines the coordinate system of the coordinates of pos Valid coordinates are: - "data": 3D dataset coordinates - "plot": 2D coordinates defined by the actual plot limits - "axis": MPL axis coordinates: (0,0) is lower left; (1,1) is upper right - "figure": MPL figure coordinates: (0,0) is lower left, (1,1) is upper right text_args : dictionary, optional A dictionary of parameters to used to update the font_properties for the text in this callback. For any property not set, it will use the defaults of the plot. Thus one can modify the text size with ``text_args={'size':24}`` size_bar_args : dictionary, optional A dictionary of parameters to be passed to the Matplotlib AnchoredSizeBar initializer. Defaults: ``{'pad': 0.25, 'sep': 5, 'borderpad': 1, 'color': 'w'}`` draw_inset_box : boolean, optional Whether or not an inset box should be included around the scale bar. inset_box_args : dictionary, optional A dictionary of keyword arguments to be passed to the matplotlib Patch object that represents the inset box. Defaults: ``{'facecolor': 'black', 'linewidth': 3, 'edgecolor': 'white', 'alpha': 0.5, 'boxstyle': 'square'}`` scale_text_format : string, optional This specifies the format of the scalebar value assuming "scale" is the numerical value and "unit" is units of the scale (e.g. 'cm', 'kpc', etc.) The scale can be specified to arbitrary precision according to printf formatting codes. The format string must only specify "scale" and "units". Example: "Length = {scale:.2f} {units}". Default: "{scale} {units}" Example ------- >>> import yt >>> ds = yt.load("Enzo_64/DD0020/data0020") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_scale() """ _type_name = "scale" _supported_geometries = ("cartesian", "spectral_cube", "force") def __init__( self, *, corner="lower_right", coeff=None, unit=None, pos=None, max_frac=0.16, min_frac=0.015, coord_system="axis", text_args=None, size_bar_args=None, draw_inset_box=False, inset_box_args=None, scale_text_format="{scale} {units}", ): # Set position based on corner argument. self.corner = corner self.coeff = coeff self.unit = unit self.pos = pos self.max_frac = max_frac self.min_frac = min_frac self.coord_system = coord_system self.scale_text_format = scale_text_format self.size_bar_args = { "pad": 0.05, "sep": 5, "borderpad": 1, "color": "white", **(size_bar_args or {}), } self.inset_box_args = { "facecolor": "black", "linewidth": 3, "edgecolor": "white", "alpha": 0.5, "boxstyle": "square", **(inset_box_args or {}), } self.text_args = text_args or {} self.draw_inset_box = draw_inset_box def __call__(self, plot): from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar # Callback only works for plots with axis ratios of 1 xsize = plot.xlim[1] - plot.xlim[0] # Setting pos overrides corner argument if self.pos is None: if self.corner == "upper_left": self.pos = (0.11, 0.952) elif self.corner == "upper_right": self.pos = (0.89, 0.952) elif self.corner == "lower_left": self.pos = (0.11, 0.052) elif self.corner == "lower_right": self.pos = (0.89, 0.052) elif self.corner is None: self.pos = (0.5, 0.5) else: raise ValueError( "Argument 'corner' must be set to " "'upper_left', 'upper_right', 'lower_left', " "'lower_right', or None" ) # When identifying a best fit distance unit, do not allow scale marker # to be greater than max_frac fraction of xaxis or under min_frac # fraction of xaxis max_scale = self.max_frac * xsize min_scale = self.min_frac * xsize # If no units are set, pick something sensible. if self.unit is None: # User has set the axes units and supplied a coefficient. if plot._axes_unit_names is not None and self.coeff is not None: self.unit = plot._axes_unit_names[0] # Nothing provided; identify a best fit distance unit. else: min_scale = plot.ds.get_smallest_appropriate_unit( min_scale, return_quantity=True ) max_scale = plot.ds.get_smallest_appropriate_unit( max_scale, return_quantity=True ) if self.coeff is None: self.coeff = max_scale.v self.unit = max_scale.units elif self.coeff is None: self.coeff = 1 self.scale = plot.ds.quan(self.coeff, self.unit) text = self.scale_text_format.format(scale=int(self.coeff), units=self.unit) image_scale = ( plot.frb.convert_distance_x(self.scale) / plot.frb.convert_distance_x(xsize) ).v size_vertical = self.size_bar_args.pop("size_vertical", 0.005 * plot.aspect) fontproperties = self.size_bar_args.pop( "fontproperties", plot.font_properties.copy() ) frameon = self.size_bar_args.pop("frameon", self.draw_inset_box) # FontProperties instances use set_<property>() setter functions for key, val in self.text_args.items(): setter_func = "set_" + key try: getattr(fontproperties, setter_func)(val) except AttributeError as e: raise AttributeError( "Cannot set text_args keyword " f"to include {key!r} because MPL's fontproperties object does " f"not contain function {setter_func!r}" ) from e # this "anchors" the size bar to a box centered on self.pos in axis # coordinates self.size_bar_args["bbox_to_anchor"] = self.pos self.size_bar_args["bbox_transform"] = plot._axes.transAxes bar = AnchoredSizeBar( plot._axes.transAxes, image_scale, text, 10, size_vertical=size_vertical, fontproperties=fontproperties, frameon=frameon, **self.size_bar_args, ) bar.patch.set(**self.inset_box_args) plot._axes.add_artist(bar) return plot
[docs] class RayCallback(PlotCallback): """ Adds a line representing the projected path of a ray across the plot. The ray can be either a YTOrthoRay, YTRay, or a LightRay object. annotate_ray() will properly account for periodic rays across the volume. If arrow is set to True, uses the MPL.pyplot.arrow function, otherwise uses the MPL.pyplot.plot function to plot a normal line. Adjust plot_args accordingly. Parameters ---------- ray : YTOrthoRay, YTRay, or LightRay Ray is the object that we want to include. We overplot the projected trajectory of the ray. If the object is a trident.LightRay object, it will only plot the segment of the LightRay that intersects the dataset currently displayed. arrow : boolean, optional Whether or not to place an arrowhead on the front of the ray to denote direction Default: False plot_args : dictionary, optional A dictionary of any arbitrary parameters to be passed to the Matplotlib line object. Defaults: {'color':'white', 'linewidth':2}. Examples -------- >>> # Overplot a ray and an ortho_ray object on a projection >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> oray = ds.ortho_ray(1, (0.3, 0.4)) # orthoray down the y axis >>> ray = ds.ray((0.1, 0.2, 0.3), (0.6, 0.7, 0.8)) # arbitrary ray >>> p = yt.ProjectionPlot(ds, "z", "density") >>> p.annotate_ray(oray) >>> p.annotate_ray(ray) >>> p.save() >>> # Overplot a LightRay object on a projection >>> import yt >>> from trident import LightRay >>> ds = yt.load("enzo_cosmology_plus/RD0004/RD0004") >>> lr = LightRay( ... "enzo_cosmology_plus/AMRCosmology.enzo", "Enzo", 0.0, 0.1, time_data=False ... ) >>> lray = lr.make_light_ray(seed=1) >>> p = yt.ProjectionPlot(ds, "z", "density") >>> p.annotate_ray(lr) >>> p.save() """ _type_name = "ray" _supported_geometries = ("cartesian", "spectral_cube", "force") def __init__(self, ray, *, arrow=False, plot_args=None, **kwargs): self.ray = ray self.arrow = arrow if plot_args is not None: issue_deprecation_warning( "`plot_args` is deprecated. " "You can now pass arbitrary keyword arguments instead of a dictionary.", since="4.1", stacklevel=5, ) self.plot_args = { "color": "white", "linewidth": 2, **(plot_args or {}), **kwargs, } def _process_ray(self): """ Get the start_coord and end_coord of a ray object """ return (self.ray.start_point, self.ray.end_point) def _process_ortho_ray(self): """ Get the start_coord and end_coord of an ortho_ray object """ start_coord = self.ray.ds.domain_left_edge.copy() end_coord = self.ray.ds.domain_right_edge.copy() xax = self.ray.ds.coordinates.x_axis[self.ray.axis] yax = self.ray.ds.coordinates.y_axis[self.ray.axis] start_coord[xax] = end_coord[xax] = self.ray.coords[0] start_coord[yax] = end_coord[yax] = self.ray.coords[1] return (start_coord, end_coord) def _process_light_ray(self, plot): """ Get the start_coord and end_coord of a LightRay object. Identify which of the sections of the LightRay is in the dataset that is currently being plotted. If there is one, return the start and end of the corresponding ray segment """ for ray_ds in self.ray.light_ray_solution: if ray_ds["unique_identifier"] == str(plot.ds.unique_identifier): start_coord = plot.ds.arr(ray_ds["start"]) end_coord = plot.ds.arr(ray_ds["end"]) return (start_coord, end_coord) # if no intersection between the plotted dataset and the LightRay # return a false tuple to pass to start_coord return ((False, False), (False, False)) def __call__(self, plot): type_name = getattr(self.ray, "_type_name", None) if type_name == "ray": start_coord, end_coord = self._process_ray() elif type_name == "ortho_ray": start_coord, end_coord = self._process_ortho_ray() elif hasattr(self.ray, "light_ray_solution"): start_coord, end_coord = self._process_light_ray(plot) else: raise ValueError("ray must be a YTRay, YTOrthoRay, or LightRay object.") # if start_coord and end_coord are all False, it means no intersecting # ray segment with this plot. if not all(start_coord) and not all(end_coord): return plot # if possible, break periodic ray into non-periodic # segments and add each of them individually if any(plot.ds.periodicity): segments = periodic_ray( start_coord.to("code_length"), end_coord.to("code_length"), left=plot.ds.domain_left_edge.to("code_length"), right=plot.ds.domain_right_edge.to("code_length"), ) else: segments = [[start_coord, end_coord]] # To assure that the last ray segment has an arrow if so desired # and all other ray segments are lines for segment in segments[:-1]: cb = LinePlotCallback( segment[0], segment[1], coord_system="data", **self.plot_args ) cb(plot) segment = segments[-1] if self.arrow: cb = ArrowCallback( segment[1], starting_pos=segment[0], coord_system="data", **self.plot_args, ) else: cb = LinePlotCallback( segment[0], segment[1], coord_system="data", **self.plot_args ) cb(plot) return plot
[docs] class LineIntegralConvolutionCallback(PlotCallback): """ Add the line integral convolution to the plot for vector fields visualization. Two component of vector fields needed to be provided (i.e., velocity_x and velocity_y, magnetic_field_x and magnetic_field_y). Parameters ---------- field_x, field_y : string The names of two components of vector field which will be visualized texture : 2-d array with the same shape of image, optional Texture will be convolved when computing line integral convolution. A white noise background will be used as default. kernellen : float, optional The lens of kernel for convolution, which is the length over which the convolution will be performed. For longer kernellen, longer streamline structure will appear. lim : 2-element tuple, list, or array, optional The value of line integral convolution will be clipped to the range of lim, which applies upper and lower bounds to the values of line integral convolution and enhance the visibility of plots. Each element should be in the range of [0,1]. cmap : string, optional The name of colormap for line integral convolution plot. alpha : float, optional The alpha value for line integral convolution plot. const_alpha : boolean, optional If set to False (by default), alpha will be weighted spatially by the values of line integral convolution; otherwise a constant value of the given alpha is used. Example ------- >>> import yt >>> ds = yt.load("Enzo_64/DD0020/data0020") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_line_integral_convolution( ... "velocity_x", "velocity_y", lim=(0.5, 0.65) ... ) """ _type_name = "line_integral_convolution" _supported_geometries = ( "cartesian", "spectral_cube", "polar", "cylindrical", "spherical", ) _incompatible_plot_types = ("LineIntegralConvolutionCallback",) def __init__( self, field_x, field_y, texture=None, kernellen=50.0, lim=(0.5, 0.6), cmap="binary", alpha=0.8, const_alpha=False, ): self.field_x = field_x self.field_y = field_y self.texture = texture self.kernellen = kernellen self.lim = lim self.cmap = cmap self.alpha = alpha self.const_alpha = const_alpha def __call__(self, plot): from matplotlib import cm bounds = self._physical_bounds(plot) extent = self._plot_bounds(plot) # We are feeding this size into the pixelizer, where it will properly # set it in reverse order nx = plot.raw_image_shape[1] ny = plot.raw_image_shape[0] pixX = plot.data.ds.coordinates.pixelize( plot.data.axis, plot.data, self.field_x, bounds, (nx, ny) ) pixY = plot.data.ds.coordinates.pixelize( plot.data.axis, plot.data, self.field_y, bounds, (nx, ny) ) vectors = np.concatenate((pixX[..., np.newaxis], pixY[..., np.newaxis]), axis=2) if self.texture is None: prng = np.random.RandomState(0x4D3D3D3) self.texture = prng.random_sample((nx, ny)) elif self.texture.shape != (nx, ny): raise ValueError( "'texture' must have the same shape " "with that of output image (%d, %d)" % (nx, ny) ) kernel = np.sin( np.arange(self.kernellen, dtype="float64") * np.pi / self.kernellen ) lic_data = line_integral_convolution_2d(vectors, self.texture, kernel) lic_data = lic_data / lic_data.max() lic_data_clip = np.clip(lic_data, self.lim[0], self.lim[1]) mask = ~(np.isfinite(pixX) & np.isfinite(pixY)) lic_data[mask] = np.nan lic_data_clip[mask] = np.nan if plot._swap_axes: lic_data_clip = lic_data_clip.transpose() extent = (extent[2], extent[3], extent[0], extent[1]) if self.const_alpha: plot._axes.imshow( lic_data_clip, extent=extent, cmap=self.cmap, alpha=self.alpha, origin="lower", aspect="auto", ) else: lic_data_rgba = cm.ScalarMappable(norm=None, cmap=self.cmap).to_rgba( lic_data_clip ) lic_data_clip_rescale = (lic_data_clip - self.lim[0]) / ( self.lim[1] - self.lim[0] ) lic_data_rgba[..., 3] = lic_data_clip_rescale * self.alpha plot._axes.imshow( lic_data_rgba, extent=extent, cmap=self.cmap, origin="lower", aspect="auto", ) return plot
[docs] class CellEdgesCallback(PlotCallback): """ Annotate cell edges. This is done through a second call to pixelize, where the distance from a pixel to a cell boundary in pixels is compared against the `line_width` argument. The secondary image is colored as `color` and overlaid with the `alpha` value. Parameters ---------- line_width : float The width of the cell edge lines in normalized units relative to the size of the longest axis. Default is 1% of the size of the smallest axis. alpha : float When the second image is overlaid, it will have this level of alpha transparency. Default is 1.0 (fully-opaque). color : tuple of three floats or matplotlib color name This is the color of the cell edge values. It defaults to black. Examples -------- >>> import yt >>> ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030") >>> s = yt.SlicePlot(ds, "z", "density") >>> s.annotate_cell_edges() >>> s.save() """ _type_name = "cell_edges" _supported_geometries = ("cartesian", "spectral_cube", "cylindrical") def __init__(self, line_width=0.002, alpha=1.0, color="black"): from matplotlib.colors import ColorConverter conv = ColorConverter() self.line_width = line_width self.alpha = alpha self.color = np.array(conv.to_rgb(color), dtype="uint8") * 255 def __call__(self, plot): if plot.data.ds.geometry == "cylindrical" and plot.data.ds.dimensionality == 3: raise NotImplementedError( "Cell edge annotation is only supported for \ for 2D cylindrical geometry, not 3D" ) x0, x1, y0, y1 = self._physical_bounds(plot) nx = plot.raw_image_shape[1] ny = plot.raw_image_shape[0] aspect = float((y1 - y0) / (x1 - x0)) pixel_aspect = float(ny) / nx relative_aspect = pixel_aspect / aspect if relative_aspect > 1: nx = int(nx / relative_aspect) else: ny = int(ny * relative_aspect) if aspect > 1: if nx < 1600: nx = int(1600.0 / nx * ny) ny = 1600 long_axis = ny else: if ny < 1600: nx = int(1600.0 / ny * nx) ny = 1600 long_axis = nx line_width = max(self.line_width * long_axis, 1.0) im = np.zeros((ny, nx), dtype="f8") pixelize_cartesian( im, plot.data["px"], plot.data["py"], plot.data["pdx"], plot.data["pdy"], plot.data["px"], # dummy field (x0, x1, y0, y1), line_width=line_width, ) # New image: im_buffer = np.zeros((ny, nx, 4), dtype="uint8") im_buffer[im > 0, 3] = 255 im_buffer[im > 0, :3] = self.color extent = self._plot_bounds(plot) if plot._swap_axes: im_buffer = im_buffer.transpose((1, 0, 2)) plot._axes.imshow( im_buffer, origin="lower", interpolation="bilinear", extent=extent, alpha=self.alpha, ) self._set_plot_limits(plot, extent)