Source code for yt.geometry.oct_geometry_handler

import numpy as np

from yt.fields.field_detector import FieldDetector
from yt.geometry.geometry_handler import Index
from yt.utilities.logger import ytLogger as mylog


[docs] class OctreeIndex(Index): """The Index subclass for oct AMR datasets""" def _setup_geometry(self): mylog.debug("Initializing Octree Geometry Handler.") self._initialize_oct_handler()
[docs] def get_smallest_dx(self): """ Returns (in code units) the smallest cell size in the simulation. """ return ( self.dataset.domain_width / (self.dataset.domain_dimensions * 2 ** (self.max_level)) ).min()
[docs] def convert(self, unit): return self.dataset.conversion_factors[unit]
def _add_mesh_sampling_particle_field(self, deposit_field, ftype, ptype): units = self.ds.field_info[ftype, deposit_field].units take_log = self.ds.field_info[ftype, deposit_field].take_log field_name = f"cell_{ftype}_{deposit_field}" def _cell_index(field, data): # Get the position of the particles pos = data[ptype, "particle_position"] Npart = pos.shape[0] ret = np.zeros(Npart, dtype="float64") tmp = np.zeros(Npart, dtype="float64") if isinstance(data, FieldDetector): return ret remaining = np.ones(Npart, dtype=bool) Nremaining = Npart Nobjs = len(data._current_chunk.objs) Nbits = int(np.ceil(np.log2(Nobjs))) # Sort objs by decreasing number of octs enumerated_objs = sorted( enumerate(data._current_chunk.objs), key=lambda arg: arg[1].oct_handler.nocts, reverse=True, ) for i, obj in enumerated_objs: if Nremaining == 0: break icell = ( obj["index", "ones"].T.reshape(-1).astype(np.int64).cumsum().value - 1 ) mesh_data = ((icell << Nbits) + i).astype(np.float64) # Access the mesh data and attach them to their particles tmp[:Nremaining] = obj.mesh_sampling_particle_field( pos[remaining], mesh_data ) ret[remaining] = tmp[:Nremaining] remaining[remaining] = np.isnan(tmp[:Nremaining]) Nremaining = remaining.sum() return data.ds.arr(ret, units="1") def _mesh_sampling_particle_field(field, data): """ Create a grid field for particle quantities using given method. """ ones = data[ptype, "particle_ones"] # Access "cell_index" field Npart = ones.shape[0] ret = np.zeros(Npart) cell_index = np.array(data[ptype, "cell_index"], np.int64) if isinstance(data, FieldDetector): return ret # The index of the obj is stored on the first bits Nobjs = len(data._current_chunk.objs) Nbits = int(np.ceil(np.log2(Nobjs))) icell = cell_index >> Nbits iobj = cell_index - (icell << Nbits) for i, subset in enumerate(data._current_chunk.objs): mask = iobj == i subset.field_parameters = data.field_parameters cell_data = subset[ftype, deposit_field].T.reshape(-1) ret[mask] = cell_data[icell[mask]] return data.ds.arr(ret, units=cell_data.units) if (ptype, "cell_index") not in self.ds.derived_field_list: self.ds.add_field( (ptype, "cell_index"), function=_cell_index, sampling_type="particle", units="1", ) self.ds.add_field( (ptype, field_name), function=_mesh_sampling_particle_field, sampling_type="particle", units=units, take_log=take_log, ) def _icoords_to_fcoords( self, icoords: np.ndarray, ires: np.ndarray, axes: tuple[int, ...] | None = None, ) -> tuple[np.ndarray, np.ndarray]: """ Accepts icoords and ires and returns appropriate fcoords and fwidth. Mostly useful for cases where we have irregularly spaced or structured grids. """ dds = self.ds.domain_width[axes,] / ( self.ds.domain_dimensions[axes,] * self.ds.refine_by ** ires[:, None] ) pos = (0.5 + icoords) * dds + self.ds.domain_left_edge[axes,] return pos, dds