Source code for yt.frontends.ytdata.data_structures

import os
import weakref
from collections import defaultdict
from functools import cached_property
from numbers import Number as numeric_type

import numpy as np

from yt.data_objects.index_subobjects.grid_patch import AMRGridPatch
from yt.data_objects.profiles import (
    Profile1DFromDataset,
    Profile2DFromDataset,
    Profile3DFromDataset,
)
from yt.data_objects.static_output import Dataset, ParticleFile
from yt.data_objects.unions import ParticleUnion
from yt.fields.field_exceptions import NeedsGridType
from yt.fields.field_info_container import FieldInfoContainer
from yt.funcs import is_root, parse_h5_attr
from yt.geometry.api import Geometry
from yt.geometry.geometry_handler import Index
from yt.geometry.grid_geometry_handler import GridIndex
from yt.geometry.particle_geometry_handler import ParticleIndex
from yt.units import dimensions
from yt.units._numpy_wrapper_functions import uconcatenate
from yt.units.unit_registry import UnitRegistry  # type: ignore
from yt.units.yt_array import YTQuantity
from yt.utilities.exceptions import GenerationInProgress, YTFieldTypeNotFound
from yt.utilities.logger import ytLogger as mylog
from yt.utilities.on_demand_imports import _h5py as h5py
from yt.utilities.parallel_tools.parallel_analysis_interface import parallel_root_only
from yt.utilities.tree_container import TreeContainer

from .fields import YTDataContainerFieldInfo, YTGridFieldInfo

_grid_data_containers = ["arbitrary_grid", "covering_grid", "smoothed_covering_grid"]
_set_attrs = {"periodicity": "_periodicity"}


[docs] class SavedDataset(Dataset): """ Base dataset class for products of calling save_as_dataset. """ geometry = Geometry.CARTESIAN _con_attrs: tuple[str, ...] = () def _parse_parameter_file(self): self.refine_by = 2 with h5py.File(self.parameter_filename, mode="r") as f: for key in f.attrs.keys(): v = parse_h5_attr(f, key) if key == "con_args": try: v = eval(v) except ValueError: # support older ytdata outputs v = v.astype("str") except NameError: # This is the most common error we expect, and it # results from having the eval do a concatenated decoded # set of the values. v = [_.decode("utf8") for _ in v] self.parameters[key] = v self._with_parameter_file_open(f) # if saved, restore unit registry from the json string if "unit_registry_json" in self.parameters: self.unit_registry = UnitRegistry.from_json( self.parameters["unit_registry_json"] ) # reset self.arr and self.quan to use new unit_registry self._arr = None self._quan = None for dim in [ "length", "mass", "pressure", "temperature", "time", "velocity", ]: cu = "code_" + dim if cu not in self.unit_registry: self.unit_registry.add(cu, 1.0, getattr(dimensions, dim)) if "code_magnetic" not in self.unit_registry: self.unit_registry.add( "code_magnetic", 0.1**0.5, dimensions.magnetic_field_cgs ) # if saved, set unit system if "unit_system_name" in self.parameters: unit_system = self.parameters["unit_system_name"] del self.parameters["unit_system_name"] else: unit_system = "cgs" # reset unit system since we may have a new unit registry self._assign_unit_system(unit_system) # assign units to parameters that have associated unit string del_pars = [] for par in self.parameters: ustr = f"{par}_units" if ustr in self.parameters: if isinstance(self.parameters[par], np.ndarray): to_u = self.arr else: to_u = self.quan self.parameters[par] = to_u(self.parameters[par], self.parameters[ustr]) del_pars.append(ustr) for par in del_pars: del self.parameters[par] for attr in self._con_attrs: sattr = _set_attrs.get(attr, attr) if sattr == "geometry": if "geometry" in self.parameters: self.geometry = Geometry(self.parameters["geometry"]) continue try: setattr(self, sattr, self.parameters.get(attr)) except TypeError: # some Dataset attributes are properties with setters # which may not accept None as an input pass def _with_parameter_file_open(self, f): # This allows subclasses to access the parameter file # while it's still open to get additional information. pass
[docs] def set_units(self): if "unit_registry_json" in self.parameters: self._set_code_unit_attributes() del self.parameters["unit_registry_json"] else: super().set_units()
def _set_code_unit_attributes(self): attrs = ( "length_unit", "mass_unit", "time_unit", "velocity_unit", "magnetic_unit", ) cgs_units = ("cm", "g", "s", "cm/s", "gauss") base_units = np.ones(len(attrs)) for unit, attr, cgs_unit in zip(base_units, attrs, cgs_units, strict=True): if attr in self.parameters and isinstance( self.parameters[attr], YTQuantity ): uq = self.parameters[attr] elif attr in self.parameters and f"{attr}_units" in self.parameters: uq = self.quan(self.parameters[attr], self.parameters[f"{attr}_units"]) del self.parameters[attr] del self.parameters[f"{attr}_units"] elif isinstance(unit, str): uq = self.quan(1.0, unit) elif isinstance(unit, numeric_type): uq = self.quan(unit, cgs_unit) elif isinstance(unit, YTQuantity): uq = unit elif isinstance(unit, tuple): uq = self.quan(unit[0], unit[1]) else: raise RuntimeError(f"{attr} ({unit}) is invalid.") setattr(self, attr, uq)
[docs] class YTDataset(SavedDataset): """Base dataset class for all ytdata datasets.""" _con_attrs = ( "cosmological_simulation", "current_time", "current_redshift", "hubble_constant", "omega_matter", "omega_lambda", "dimensionality", "domain_dimensions", "geometry", "periodicity", "domain_left_edge", "domain_right_edge", "container_type", "data_type", ) def _with_parameter_file_open(self, f): self.num_particles = { group: parse_h5_attr(f[group], "num_elements") for group in f if group != self.default_fluid_type }
[docs] def create_field_info(self): self.field_dependencies = {} self.derived_field_list = [] self.filtered_particle_types = [] self.field_info = self._field_info_class(self, self.field_list) self.coordinates.setup_fields(self.field_info) self.field_info.setup_fluid_fields() for ptype in self.particle_types: self.field_info.setup_particle_fields(ptype) self._setup_gas_alias() self.field_info.setup_fluid_index_fields() if "all" not in self.particle_types: mylog.debug("Creating Particle Union 'all'") pu = ParticleUnion("all", list(self.particle_types_raw)) self.add_particle_union(pu) self.field_info.setup_extra_union_fields() mylog.debug("Loading field plugins.") self.field_info.load_all_plugins() deps, unloaded = self.field_info.check_derived_fields() self.field_dependencies.update(deps)
def _setup_gas_alias(self): pass def _setup_override_fields(self): pass
[docs] class YTDataHDF5File(ParticleFile): def __init__(self, ds, io, filename, file_id, range): with h5py.File(filename, mode="r") as f: self.header = {field: parse_h5_attr(f, field) for field in f.attrs.keys()} super().__init__(ds, io, filename, file_id, range)
[docs] class YTDataContainerDataset(YTDataset): """Dataset for saved geometric data containers.""" _load_requirements = ["h5py"] _index_class = ParticleIndex _file_class = YTDataHDF5File _field_info_class: type[FieldInfoContainer] = YTDataContainerFieldInfo _suffix = ".h5" fluid_types = ("grid", "gas", "deposit", "index") def __init__( self, filename, dataset_type="ytdatacontainer_hdf5", index_order=None, index_filename=None, units_override=None, unit_system="cgs", ): self.index_order = index_order self.index_filename = index_filename super().__init__( filename, dataset_type, units_override=units_override, unit_system=unit_system, ) def _parse_parameter_file(self): super()._parse_parameter_file() self.particle_types_raw = tuple(self.num_particles.keys()) self.particle_types = self.particle_types_raw self.filename_template = self.parameter_filename self.file_count = 1 self.domain_dimensions = np.ones(3, "int32") def _setup_gas_alias(self): "Alias the grid type to gas by making a particle union." if "grid" in self.particle_types and "gas" not in self.particle_types: pu = ParticleUnion("gas", ["grid"]) self.add_particle_union(pu) # We have to alias this because particle unions only # cover the field_list. self.field_info.alias(("gas", "cell_volume"), ("grid", "cell_volume")) @cached_property def data(self): """ Return a data container configured like the original used to create this dataset. """ # Some data containers can't be reconstructed in the same way # since this is now particle-like data. data_type = self.parameters.get("data_type") container_type = self.parameters.get("container_type") ex_container_type = ["cutting", "quad_proj", "ray", "slice", "cut_region"] if data_type == "yt_light_ray" or container_type in ex_container_type: mylog.info("Returning an all_data data container.") return self.all_data() my_obj = getattr(self, self.parameters["container_type"]) my_args = [self.parameters[con_arg] for con_arg in self.parameters["con_args"]] return my_obj(*my_args) @classmethod def _is_valid(cls, filename: str, *args, **kwargs) -> bool: if not filename.endswith(".h5"): return False if cls._missing_load_requirements(): return False with h5py.File(filename, mode="r") as f: data_type = parse_h5_attr(f, "data_type") cont_type = parse_h5_attr(f, "container_type") if data_type is None: return False if ( data_type == "yt_data_container" and cont_type not in _grid_data_containers ): return True return False
[docs] class YTDataLightRayDataset(YTDataContainerDataset): """Dataset for saved LightRay objects.""" _load_requirements = ["h5py"] def _parse_parameter_file(self): super()._parse_parameter_file() self._restore_light_ray_solution() def _restore_light_ray_solution(self): """ Restore all information associate with the light ray solution to its original form. """ key = "light_ray_solution" self.light_ray_solution = [] lrs_fields = [ par for par in self.parameters if key in par and not par.endswith("_units") ] if len(lrs_fields) == 0: return self.light_ray_solution = [{} for val in self.parameters[lrs_fields[0]]] for sp3 in ["unique_identifier", "filename"]: ksp3 = f"{key}_{sp3}" if ksp3 not in lrs_fields: continue self.parameters[ksp3] = self.parameters[ksp3].astype(str) for field in lrs_fields: field_name = field[len(key) + 1 :] for i in range(self.parameters[field].shape[0]): self.light_ray_solution[i][field_name] = self.parameters[field][i] @classmethod def _is_valid(cls, filename: str, *args, **kwargs) -> bool: if not filename.endswith(".h5"): return False if cls._missing_load_requirements(): return False with h5py.File(filename, mode="r") as f: data_type = parse_h5_attr(f, "data_type") if data_type in ["yt_light_ray"]: return True return False
[docs] class YTSpatialPlotDataset(YTDataContainerDataset): """Dataset for saved slices and projections.""" _load_requirements = ["h5py"] _field_info_class = YTGridFieldInfo def __init__(self, *args, **kwargs): super().__init__(*args, dataset_type="ytspatialplot_hdf5", **kwargs) def _parse_parameter_file(self): super()._parse_parameter_file() if self.parameters["container_type"] == "proj": if ( isinstance(self.parameters["weight_field"], str) and self.parameters["weight_field"] == "None" ): self.parameters["weight_field"] = None elif isinstance(self.parameters["weight_field"], np.ndarray): self.parameters["weight_field"] = tuple(self.parameters["weight_field"]) @classmethod def _is_valid(cls, filename: str, *args, **kwargs) -> bool: if not filename.endswith(".h5"): return False if cls._missing_load_requirements(): return False with h5py.File(filename, mode="r") as f: data_type = parse_h5_attr(f, "data_type") cont_type = parse_h5_attr(f, "container_type") if data_type == "yt_data_container" and cont_type in [ "cutting", "proj", "slice", "quad_proj", ]: return True return False
[docs] class YTGrid(AMRGridPatch): _id_offset = 0 def __init__(self, gid, index, filename=None): AMRGridPatch.__init__(self, gid, filename=filename, index=index) self._children_ids = [] self._parent_id = -1 self.Level = 0 self.LeftEdge = self.index.ds.domain_left_edge self.RightEdge = self.index.ds.domain_right_edge def __getitem__(self, key): tr = super(AMRGridPatch, self).__getitem__(key) try: fields = self._determine_fields(key) except YTFieldTypeNotFound: return tr finfo = self.ds._get_field_info(fields[0]) if not finfo.sampling_type == "particle": return tr.reshape(self.ActiveDimensions[: self.ds.dimensionality]) return tr @property def Parent(self): return None @property def Children(self): return []
[docs] class YTDataHierarchy(GridIndex): def __init__(self, ds, dataset_type=None): self.dataset_type = dataset_type self.float_type = "float64" self.dataset = weakref.proxy(ds) self.directory = os.getcwd() super().__init__(ds, dataset_type) def _count_grids(self): self.num_grids = 1 def _parse_index(self): self.grid_dimensions[:] = self.ds.domain_dimensions self.grid_left_edge[:] = self.ds.domain_left_edge self.grid_right_edge[:] = self.ds.domain_right_edge self.grid_levels[:] = np.zeros(self.num_grids) self.grid_procs = np.zeros(self.num_grids) self.grid_particle_count[:] = sum(self.ds.num_particles.values()) self.grids = [] for gid in range(self.num_grids): self.grids.append(self.grid(gid, self)) self.grids[gid].Level = self.grid_levels[gid, 0] self.max_level = self.grid_levels.max() temp_grids = np.empty(self.num_grids, dtype="object") for i, grid in enumerate(self.grids): grid.filename = self.ds.parameter_filename grid._prepare_grid() grid.proc_num = self.grid_procs[i] temp_grids[i] = grid self.grids = temp_grids def _detect_output_fields(self): self.field_list = [] self.ds.field_units = self.ds.field_units or {} with h5py.File(self.ds.parameter_filename, mode="r") as f: for group in f: for field in f[group]: field_name = (str(group), str(field)) self.field_list.append(field_name) self.ds.field_units[field_name] = parse_h5_attr( f[group][field], "units" )
[docs] class YTGridHierarchy(YTDataHierarchy): grid = YTGrid def _populate_grid_objects(self): for g in self.grids: g._setup_dx() self.max_level = self.grid_levels.max()
[docs] class YTGridDataset(YTDataset): """Dataset for saved covering grids, arbitrary grids, and FRBs.""" _load_requirements = ["h5py"] _index_class: type[Index] = YTGridHierarchy _field_info_class = YTGridFieldInfo _dataset_type = "ytgridhdf5" geometry = Geometry.CARTESIAN default_fluid_type = "grid" fluid_types: tuple[str, ...] = ("grid", "gas", "deposit", "index") def __init__(self, filename, unit_system="cgs"): super().__init__(filename, self._dataset_type, unit_system=unit_system) self.data = self.index.grids[0] def _parse_parameter_file(self): super()._parse_parameter_file() self.num_particles.pop(self.default_fluid_type, None) self.particle_types_raw = tuple(self.num_particles.keys()) self.particle_types = self.particle_types_raw # correct domain dimensions for the covering grid dimension self.base_domain_left_edge = self.domain_left_edge self.base_domain_right_edge = self.domain_right_edge self.base_domain_dimensions = self.domain_dimensions if self.container_type in _grid_data_containers: self.domain_left_edge = self.parameters["left_edge"] if "level" in self.parameters["con_args"]: dx = (self.base_domain_right_edge - self.base_domain_left_edge) / ( self.domain_dimensions * self.refine_by ** self.parameters["level"] ) self.domain_right_edge = ( self.domain_left_edge + self.parameters["ActiveDimensions"] * dx ) self.domain_dimensions = ( (self.domain_right_edge - self.domain_left_edge) / dx ).astype("int64") else: self.domain_right_edge = self.parameters["right_edge"] self.domain_dimensions = self.parameters["ActiveDimensions"] dx = ( self.domain_right_edge - self.domain_left_edge ) / self.domain_dimensions periodicity = ( np.abs(self.domain_left_edge - self.base_domain_left_edge) < 0.5 * dx ) periodicity &= ( np.abs(self.domain_right_edge - self.base_domain_right_edge) < 0.5 * dx ) self._periodicity = periodicity elif self.data_type == "yt_frb": dle = self.domain_left_edge self.domain_left_edge = uconcatenate( [self.parameters["left_edge"].to(dle.units), [0] * dle.uq] ) dre = self.domain_right_edge self.domain_right_edge = uconcatenate( [self.parameters["right_edge"].to(dre.units), [1] * dre.uq] ) self.domain_dimensions = np.concatenate( [self.parameters["ActiveDimensions"], [1]] ) def _setup_gas_alias(self): "Alias the grid type to gas with a field alias." for ftype, field in self.field_list: if ftype == "grid": self.field_info.alias(("gas", field), ("grid", field)) @classmethod def _is_valid(cls, filename: str, *args, **kwargs) -> bool: if not filename.endswith(".h5"): return False if cls._missing_load_requirements(): return False with h5py.File(filename, mode="r") as f: data_type = parse_h5_attr(f, "data_type") cont_type = parse_h5_attr(f, "container_type") if data_type == "yt_frb": return True if data_type == "yt_data_container" and cont_type in _grid_data_containers: return True return False
[docs] class YTNonspatialGrid(AMRGridPatch): _id_offset = 0 def __init__(self, gid, index, filename=None): super().__init__(gid, filename=filename, index=index) self._children_ids = [] self._parent_id = -1 self.Level = 0 self.LeftEdge = self.index.ds.domain_left_edge self.RightEdge = self.index.ds.domain_right_edge def __getitem__(self, key): tr = super(AMRGridPatch, self).__getitem__(key) try: fields = self._determine_fields(key) except YTFieldTypeNotFound: return tr self.ds._get_field_info(fields[0]) return tr
[docs] def get_data(self, fields=None): if fields is None: return nfields = [] apply_fields = defaultdict(list) for field in self._determine_fields(fields): if field[0] in self.ds.filtered_particle_types: f = self.ds.known_filters[field[0]] apply_fields[field[0]].append((f.filtered_type, field[1])) else: nfields.append(field) for filter_type in apply_fields: f = self.ds.known_filters[filter_type] with f.apply(self): self.get_data(apply_fields[filter_type]) fields = nfields if len(fields) == 0: return # Now we collect all our fields # Here is where we need to perform a validation step, so that if we # have a field requested that we actually *can't* yet get, we put it # off until the end. This prevents double-reading fields that will # need to be used in spatial fields later on. fields_to_get = [] # This will be pre-populated with spatial fields fields_to_generate = [] for field in self._determine_fields(fields): if field in self.field_data: continue finfo = self.ds._get_field_info(field) try: finfo.check_available(self) except NeedsGridType: fields_to_generate.append(field) continue fields_to_get.append(field) if len(fields_to_get) == 0 and len(fields_to_generate) == 0: return elif self._locked: raise GenerationInProgress(fields) # Track which ones we want in the end ofields = set(list(self.field_data.keys()) + fields_to_get + fields_to_generate) # At this point, we want to figure out *all* our dependencies. fields_to_get = self._identify_dependencies(fields_to_get, self._spatial) # We now split up into readers for the types of fields fluids, particles = [], [] finfos = {} for field_key in fields_to_get: finfo = self.ds._get_field_info(field_key) finfos[field_key] = finfo if finfo.sampling_type == "particle": particles.append(field_key) elif field_key not in fluids: fluids.append(field_key) # The _read method will figure out which fields it needs to get from # disk, and return a dict of those fields along with the fields that # need to be generated. read_fluids, gen_fluids = self.index._read_fluid_fields( fluids, self, self._current_chunk ) for f, v in read_fluids.items(): convert = True if v.dtype != np.float64: if finfos[f].units == "": self.field_data[f] = v convert = False else: v = v.astype(np.float64) if convert: self.field_data[f] = self.ds.arr(v, units=finfos[f].units) self.field_data[f].convert_to_units(finfos[f].output_units) read_particles, gen_particles = self.index._read_fluid_fields( particles, self, self._current_chunk ) for f, v in read_particles.items(): convert = True if v.dtype != np.float64: if finfos[f].units == "": self.field_data[f] = v convert = False else: v = v.astype(np.float64) if convert: self.field_data[f] = self.ds.arr(v, units=finfos[f].units) self.field_data[f].convert_to_units(finfos[f].output_units) fields_to_generate += gen_fluids + gen_particles self._generate_fields(fields_to_generate) for field in list(self.field_data.keys()): if field not in ofields: self.field_data.pop(field)
@property def Parent(self): return None @property def Children(self): return []
[docs] class YTNonspatialHierarchy(YTDataHierarchy): grid = YTNonspatialGrid def _populate_grid_objects(self): for g in self.grids: g._setup_dx() # this is non-spatial, so remove the code_length units g.dds = self.ds.arr(g.dds.d, "") g.ActiveDimensions = self.ds.domain_dimensions self.max_level = self.grid_levels.max() def _read_fluid_fields(self, fields, dobj, chunk=None): if len(fields) == 0: return {}, [] fields_to_read, fields_to_generate = self._split_fields(fields) if len(fields_to_read) == 0: return {}, fields_to_generate selector = dobj.selector fields_to_return = self.io._read_fluid_selection(dobj, selector, fields_to_read) return fields_to_return, fields_to_generate
[docs] class YTNonspatialDataset(YTGridDataset): """Dataset for general array data.""" _load_requirements = ["h5py"] _index_class = YTNonspatialHierarchy _field_info_class = YTGridFieldInfo _dataset_type = "ytnonspatialhdf5" geometry = Geometry.CARTESIAN default_fluid_type = "data" fluid_types: tuple[str, ...] = ("data", "gas") def _parse_parameter_file(self): super(YTGridDataset, self)._parse_parameter_file() self.num_particles.pop(self.default_fluid_type, None) self.particle_types_raw = tuple(self.num_particles.keys()) self.particle_types = self.particle_types_raw def _set_derived_attrs(self): # set some defaults just to make things go default_attrs = { "dimensionality": 3, "domain_dimensions": np.ones(3, dtype="int64"), "domain_left_edge": np.zeros(3), "domain_right_edge": np.ones(3), "_periodicity": np.ones(3, dtype="bool"), } for att, val in default_attrs.items(): if getattr(self, att, None) is None: setattr(self, att, val) def _setup_classes(self): # We don't allow geometric selection for non-spatial datasets self.objects = []
[docs] @parallel_root_only def print_key_parameters(self): for a in [ "current_time", "domain_dimensions", "domain_left_edge", "domain_right_edge", "cosmological_simulation", ]: v = getattr(self, a) if v is not None: mylog.info("Parameters: %-25s = %s", a, v) if hasattr(self, "cosmological_simulation") and self.cosmological_simulation: for a in [ "current_redshift", "omega_lambda", "omega_matter", "hubble_constant", ]: v = getattr(self, a) if v is not None: mylog.info("Parameters: %-25s = %s", a, v) mylog.warning("Geometric data selection not available for this dataset type.")
@classmethod def _is_valid(cls, filename: str, *args, **kwargs) -> bool: if not filename.endswith(".h5"): return False if cls._missing_load_requirements(): return False with h5py.File(filename, mode="r") as f: data_type = parse_h5_attr(f, "data_type") if data_type == "yt_array_data": return True return False
[docs] class YTProfileDataset(YTNonspatialDataset): """Dataset for saved profile objects.""" _load_requirements = ["h5py"] fluid_types = ("data", "gas", "standard_deviation") def __init__(self, filename, unit_system="cgs"): super().__init__(filename, unit_system=unit_system) _profile = None @property def profile(self): if self._profile is not None: return self._profile if self.dimensionality == 1: self._profile = Profile1DFromDataset(self) elif self.dimensionality == 2: self._profile = Profile2DFromDataset(self) elif self.dimensionality == 3: self._profile = Profile3DFromDataset(self) else: self._profile = None return self._profile def _parse_parameter_file(self): super(YTGridDataset, self)._parse_parameter_file() if ( isinstance(self.parameters["weight_field"], str) and self.parameters["weight_field"] == "None" ): self.parameters["weight_field"] = None elif isinstance(self.parameters["weight_field"], np.ndarray): self.parameters["weight_field"] = tuple( self.parameters["weight_field"].astype(str) ) for a in ["profile_dimensions"] + [ f"{ax}_{attr}" for ax in "xyz"[: self.dimensionality] for attr in ["log"] ]: setattr(self, a, self.parameters[a]) self.base_domain_left_edge = self.domain_left_edge self.base_domain_right_edge = self.domain_right_edge self.base_domain_dimensions = self.domain_dimensions domain_dimensions = np.ones(3, dtype="int64") domain_dimensions[: self.dimensionality] = self.profile_dimensions self.domain_dimensions = domain_dimensions domain_left_edge = np.zeros(3) domain_right_edge = np.ones(3) for i, ax in enumerate("xyz"[: self.dimensionality]): range_name = f"{ax}_range" my_range = self.parameters[range_name] if getattr(self, f"{ax}_log", False): my_range = np.log10(my_range) domain_left_edge[i] = my_range[0] domain_right_edge[i] = my_range[1] setattr(self, range_name, self.parameters[range_name]) bin_field = f"{ax}_field" if ( isinstance(self.parameters[bin_field], str) and self.parameters[bin_field] == "None" ): self.parameters[bin_field] = None elif isinstance(self.parameters[bin_field], np.ndarray): self.parameters[bin_field] = ( "data", self.parameters[bin_field].astype(str)[1], ) setattr(self, bin_field, self.parameters[bin_field]) self.domain_left_edge = domain_left_edge self.domain_right_edge = domain_right_edge def _setup_gas_alias(self): "Alias the grid type to gas with a field alias." for ftype, field in self.field_list: if ftype == "data": self.field_info.alias(("gas", field), (ftype, field))
[docs] def create_field_info(self): super().create_field_info() if self.parameters["weight_field"] is not None: self.field_info.alias( self.parameters["weight_field"], (self.default_fluid_type, "weight") )
def _set_derived_attrs(self): self.domain_center = 0.5 * (self.domain_right_edge + self.domain_left_edge) self.domain_width = self.domain_right_edge - self.domain_left_edge
[docs] def print_key_parameters(self): if is_root(): mylog.info("YTProfileDataset") for a in ["dimensionality", "profile_dimensions"] + [ f"{ax}_{attr}" for ax in "xyz"[: self.dimensionality] for attr in ["field", "range", "log"] ]: v = getattr(self, a) mylog.info("Parameters: %-25s = %s", a, v) super().print_key_parameters()
@classmethod def _is_valid(cls, filename: str, *args, **kwargs) -> bool: if not filename.endswith(".h5"): return False if cls._missing_load_requirements(): return False with h5py.File(filename, mode="r") as f: data_type = parse_h5_attr(f, "data_type") if data_type == "yt_profile": return True return False
[docs] class YTClumpContainer(TreeContainer): def __init__( self, clump_id, global_id, parent_id, contour_key, contour_id, ds=None ): self.clump_id = clump_id self.global_id = global_id self.parent_id = parent_id self.contour_key = contour_key self.contour_id = contour_id self.parent = None self.ds = ds TreeContainer.__init__(self)
[docs] def add_child(self, child): if self.children is None: self.children = [] self.children.append(child) child.parent = self
def __repr__(self): return "Clump[%d]" % self.clump_id def __getitem__(self, field): g = self.ds.data f = g._determine_fields(field)[0] if f[0] == "clump": return g[f][self.global_id] if self.contour_id == -1: return g[f] cfield = (f[0], f"contours_{self.contour_key.decode('utf-8')}") if f[0] == "grid": return g[f][g[cfield] == self.contour_id] return self.parent[f][g[cfield] == self.contour_id]
[docs] class YTClumpTreeDataset(YTNonspatialDataset): """Dataset for saved clump-finder data.""" _load_requirements = ["h5py"] def __init__(self, filename, unit_system="cgs"): super().__init__(filename, unit_system=unit_system) self._load_tree() def _load_tree(self): my_tree = {} for i, clump_id in enumerate(self.data["clump", "clump_id"]): my_tree[clump_id] = YTClumpContainer( clump_id, i, self.data["clump", "parent_id"][i], self.data["clump", "contour_key"][i], self.data["clump", "contour_id"][i], self, ) for clump in my_tree.values(): if clump.parent_id == -1: self.tree = clump else: parent = my_tree[clump.parent_id] parent.add_child(clump) @cached_property def leaves(self): return [clump for clump in self.tree if clump.children is None] @classmethod def _is_valid(cls, filename: str, *args, **kwargs) -> bool: if not filename.endswith(".h5"): return False if cls._missing_load_requirements(): return False with h5py.File(filename, mode="r") as f: data_type = parse_h5_attr(f, "data_type") if data_type is None: return False if data_type == "yt_clump_tree": return True return False