Source code for yt.frontends.owls.owls_ion_tables

import numpy as np

from yt.utilities.on_demand_imports import _h5py as h5py


[docs] def h5rd(fname, path, dtype=None): """Read Data. Return a dataset located at <path> in file <fname> as a numpy array. e.g. rd( fname, '/PartType0/Coordinates' ).""" data = None fid = h5py.h5f.open(fname.encode("latin-1"), h5py.h5f.ACC_RDONLY) dg = h5py.h5d.open(fid, path.encode("ascii")) if dtype is None: dtype = dg.dtype data = np.zeros(dg.shape, dtype=dtype) dg.read(h5py.h5s.ALL, h5py.h5s.ALL, data) fid.close() return data
[docs] class IonTableSpectrum: """A class to handle the HM01 spectra in the OWLS ionization tables.""" def __init__(self, ion_file): where = "/header/spectrum/gammahi" self.GH1 = h5rd(ion_file, where) # GH1[1/s] where = "/header/spectrum/logenergy_ryd" self.logryd = h5rd(ion_file, where) # E[ryd] where = "/header/spectrum/logflux" self.logflux = h5rd(ion_file, where) # J[ergs/s/Hz/Sr/cm^2] where = "/header/spectrum/redshift" self.z = h5rd(ion_file, where) # z
[docs] def return_table_GH1_at_z(self, z): # find redshift indices # ----------------------------------------------------------------- i_zlo = np.argmin(np.abs(self.z - z)) if self.z[i_zlo] < z: i_zhi = i_zlo + 1 else: i_zhi = i_zlo i_zlo = i_zlo - 1 z_frac = (z - self.z[i_zlo]) / (self.z[i_zhi] - self.z[i_zlo]) # find GH1 from table # ----------------------------------------------------------------- logGH1_all = np.log10(self.GH1) dlog_GH1 = logGH1_all[i_zhi] - logGH1_all[i_zlo] logGH1_table = logGH1_all[i_zlo] + z_frac * dlog_GH1 GH1_table = 10.0**logGH1_table return GH1_table
[docs] class IonTableOWLS: """A class to handle OWLS ionization tables.""" DELTA_nH = 0.25 DELTA_T = 0.1 def __init__(self, ion_file): self.ion_file = ion_file # ionbal is indexed like [nH, T, z] # nH and T are log quantities # --------------------------------------------------------------- self.nH = h5rd(ion_file, "/logd") # log nH [cm^-3] self.T = h5rd(ion_file, "/logt") # log T [K] self.z = h5rd(ion_file, "/redshift") # z # read the ionization fractions # linear values stored in file so take log here # ionbal is the ionization balance (i.e. fraction) # --------------------------------------------------------------- self.ionbal = h5rd(ion_file, "/ionbal").astype(np.float64) self.ionbal_orig = self.ionbal.copy() ipositive = self.ionbal > 0.0 izero = np.logical_not(ipositive) self.ionbal[izero] = self.ionbal[ipositive].min() self.ionbal = np.log10(self.ionbal) # load in background spectrum # --------------------------------------------------------------- self.spectrum = IonTableSpectrum(ion_file) # calculate the spacing along each dimension # --------------------------------------------------------------- self.dnH = self.nH[1:] - self.nH[0:-1] self.dT = self.T[1:] - self.T[0:-1] self.dz = self.z[1:] - self.z[0:-1] self.order_str = "[log nH, log T, z]" # sets iz and fz # -----------------------------------------------------
[docs] def set_iz(self, z): if z <= self.z[0]: self.iz = 0 self.fz = 0.0 elif z >= self.z[-1]: self.iz = len(self.z) - 2 self.fz = 1.0 else: for iz in range(len(self.z) - 1): if z < self.z[iz + 1]: self.iz = iz self.fz = (z - self.z[iz]) / self.dz[iz] break
# interpolate the table at a fixed redshift for the input # values of nH and T ( input should be log ). A simple # tri-linear interpolation is used. # -----------------------------------------------------
[docs] def interp(self, nH, T): nH = np.array(nH) T = np.array(T) if nH.size != T.size: raise ValueError(" owls_ion_tables: array size mismatch !!! ") # field discovery will have nH.size == 1 and T.size == 1 # in that case we simply return 1.0 if nH.size == 1 and T.size == 1: ionfrac = 1.0 return ionfrac # find inH and fnH # ----------------------------------------------------- x_nH = (nH - self.nH[0]) / self.DELTA_nH x_nH_clip = np.clip(x_nH, 0.0, self.nH.size - 1.001) fnH, inH = np.modf(x_nH_clip) inH = inH.astype(np.int32) # find iT and fT # ----------------------------------------------------- x_T = (T - self.T[0]) / self.DELTA_T x_T_clip = np.clip(x_T, 0.0, self.T.size - 1.001) fT, iT = np.modf(x_T_clip) iT = iT.astype(np.int32) # short names for previously calculated iz and fz # ----------------------------------------------------- iz = self.iz fz = self.fz # calculate interpolated value # use tri-linear interpolation on the log values # ----------------------------------------------------- ionfrac = ( self.ionbal[inH, iT, iz] * (1 - fnH) * (1 - fT) * (1 - fz) + self.ionbal[inH + 1, iT, iz] * (fnH) * (1 - fT) * (1 - fz) + self.ionbal[inH, iT + 1, iz] * (1 - fnH) * (fT) * (1 - fz) + self.ionbal[inH, iT, iz + 1] * (1 - fnH) * (1 - fT) * (fz) + self.ionbal[inH + 1, iT, iz + 1] * (fnH) * (1 - fT) * (fz) + self.ionbal[inH, iT + 1, iz + 1] * (1 - fnH) * (fT) * (fz) + self.ionbal[inH + 1, iT + 1, iz] * (fnH) * (fT) * (1 - fz) + self.ionbal[inH + 1, iT + 1, iz + 1] * (fnH) * (fT) * (fz) ) return 10**ionfrac