Source code for yt.data_objects.selection_objects.cut_region

import re

import numpy as np
from more_itertools import always_iterable

from yt.data_objects.selection_objects.data_selection_objects import (
    YTSelectionContainer,
    YTSelectionContainer3D,
)
from yt.data_objects.static_output import Dataset
from yt.funcs import iter_fields, validate_object, validate_sequence
from yt.geometry.selection_routines import points_in_cells
from yt.utilities.exceptions import YTIllDefinedCutRegion
from yt.utilities.on_demand_imports import _scipy


[docs] class YTCutRegion(YTSelectionContainer3D): """ This is a data object designed to allow individuals to apply logical operations to fields and filter as a result of those cuts. Parameters ---------- data_source : YTSelectionContainer3D The object to which cuts will be applied. conditionals : list of strings A list of conditionals that will be evaluated. In the namespace available, these conditionals will have access to 'obj' which is a data object of unknown shape, and they must generate a boolean array. For instance, conditionals = ["obj['gas', 'temperature'] < 1e3"] Examples -------- >>> import yt >>> ds = yt.load("RedshiftOutput0005") >>> sp = ds.sphere("max", (1.0, "Mpc")) >>> cr = ds.cut_region(sp, ["obj['gas', 'temperature'] < 1e3"]) """ _type_name = "cut_region" _con_args = ("base_object", "conditionals") _derived_quantity_chunking = "all" def __init__( self, data_source, conditionals, ds=None, field_parameters=None, base_object=None, locals=None, ): if locals is None: locals = {} validate_object(data_source, YTSelectionContainer) validate_sequence(conditionals) for condition in conditionals: validate_object(condition, str) validate_object(ds, Dataset) validate_object(field_parameters, dict) validate_object(base_object, YTSelectionContainer) self.conditionals = list(always_iterable(conditionals)) if isinstance(data_source, YTCutRegion): # If the source is also a cut region, add its conditionals # and set the source to be its source. # Preserve order of conditionals. self.conditionals = data_source.conditionals + self.conditionals data_source = data_source.base_object super().__init__( data_source.center, ds, field_parameters, data_source=data_source ) self.filter_fields = self._check_filter_fields() self.base_object = data_source self.locals = locals self._selector = None # Need to interpose for __getitem__, fwidth, fcoords, icoords, iwidth, # ires and get_data def _check_filter_fields(self): fields = [] for cond in self.conditionals: for field in re.findall(r"\[([A-Za-z0-9_,.'\"\(\)]+)\]", cond): fd = field.replace('"', "").replace("'", "") if "," in fd: fd = tuple(fd.strip("()").split(",")) fd = self.ds._get_field_info(fd) if fd.sampling_type == "particle" or fd.is_sph_field: raise RuntimeError( f"cut_region requires a mesh-based field, " f"but {fd.name} is a particle field! Use " f"a particle filter instead. " ) fields.append(fd.name) return fields
[docs] def chunks(self, fields, chunking_style, **kwargs): # We actually want to chunk the sub-chunk, not ourselves. We have no # chunks to speak of, as we do not data IO. for chunk in self.index._chunk(self.base_object, chunking_style, **kwargs): with self.base_object._chunked_read(chunk): with self._chunked_read(chunk): self.get_data(fields) yield self
[docs] def get_data(self, fields=None): fields = list(iter_fields(fields)) self.base_object.get_data(fields) ind = self._cond_ind for field in fields: f = self.base_object[field] if f.shape != ind.shape: parent = getattr(self, "parent", self.base_object) self.field_data[field] = parent[field][self._part_ind(field[0])] else: self.field_data[field] = self.base_object[field][ind]
@property def blocks(self): # We have to take a slightly different approach here. Note that all # that .blocks has to yield is a 3D array and a mask. for obj, m in self.base_object.blocks: m = m.copy() with obj._field_parameter_state(self.field_parameters): for cond in self.conditionals: ss = eval(cond) m = np.logical_and(m, ss, m) if not np.any(m): continue yield obj, m @property def _cond_ind(self): ind = None obj = self.base_object locals = self.locals.copy() if "obj" in locals: raise RuntimeError( '"obj" has been defined in the "locals" ; ' "this is not supported, please rename the variable." ) locals["obj"] = obj with obj._field_parameter_state(self.field_parameters): for cond in self.conditionals: res = eval(cond, locals) if ind is None: ind = res if ind.shape != res.shape: raise YTIllDefinedCutRegion(self.conditionals) np.logical_and(res, ind, ind) return ind def _part_ind_KDTree(self, ptype): """Find the particles in cells using a KDTree approach.""" parent = getattr(self, "parent", self.base_object) units = "code_length" pos = np.stack( [ self["index", "x"].to(units), self["index", "y"].to(units), self["index", "z"].to(units), ], axis=1, ).value dx = np.stack( [ self["index", "dx"].to(units), self["index", "dy"].to(units), self["index", "dz"].to(units), ], axis=1, ).value ppos = np.stack( [ parent[ptype, "particle_position_x"], parent[ptype, "particle_position_y"], parent[ptype, "particle_position_z"], ], axis=1, ).value mask = np.zeros(ppos.shape[0], dtype=bool) levels = self["index", "grid_level"].astype("int32").value if levels.size == 0: return mask levelmin = levels.min() levelmax = levels.max() for lvl in range(levelmax, levelmin - 1, -1): # Filter out cells not in the current level lvl_mask = levels == lvl dx_loc = dx[lvl_mask] pos_loc = pos[lvl_mask] grid_tree = _scipy.spatial.cKDTree(pos_loc, boxsize=1) # Compute closest cell for all remaining particles dist, icell = grid_tree.query( ppos[~mask], distance_upper_bound=dx_loc.max(), p=np.inf ) mask_loc = np.isfinite(dist[:]) # Check that particles within dx of a cell are in it i = icell[mask_loc] dist = np.abs(ppos[~mask][mask_loc, :] - pos_loc[i]) tmp_mask = np.all(dist <= (dx_loc[i] / 2), axis=1) mask_loc[mask_loc] = tmp_mask # Update the particle mask with particles found at this level mask[~mask] |= mask_loc return mask def _part_ind_brute_force(self, ptype): parent = getattr(self, "parent", self.base_object) units = "code_length" mask = points_in_cells( self["index", "x"].to(units), self["index", "y"].to(units), self["index", "z"].to(units), self["index", "dx"].to(units), self["index", "dy"].to(units), self["index", "dz"].to(units), parent[ptype, "particle_position_x"].to(units), parent[ptype, "particle_position_y"].to(units), parent[ptype, "particle_position_z"].to(units), ) return mask def _part_ind(self, ptype): # If scipy is installed, use the fast KD tree # implementation. Else, fall back onto the direct # brute-force algorithm. try: _scipy.spatial.KDTree return self._part_ind_KDTree(ptype) except ImportError: return self._part_ind_brute_force(ptype) @property def icoords(self): return self.base_object.icoords[self._cond_ind, :] @property def fcoords(self): return self.base_object.fcoords[self._cond_ind, :] @property def ires(self): return self.base_object.ires[self._cond_ind] @property def fwidth(self): return self.base_object.fwidth[self._cond_ind, :] def _get_bbox(self): """ Get the bounding box for the cut region. Here we just use the bounding box for the source region. """ return self.base_object._get_bbox()