Source code for yt.data_objects.construction_data_containers

import fileinput
import io
import os
import warnings
import zipfile
from functools import partial, wraps
from re import finditer
from tempfile import NamedTemporaryFile, TemporaryFile

import numpy as np
from more_itertools import always_iterable

from yt._maintenance.deprecation import issue_deprecation_warning
from yt._typing import FieldKey
from yt.config import ytcfg
from yt.data_objects.field_data import YTFieldData
from yt.data_objects.selection_objects.data_selection_objects import (
    YTSelectionContainer1D,
    YTSelectionContainer2D,
    YTSelectionContainer3D,
)
from yt.fields.field_exceptions import NeedsGridType, NeedsOriginalGrid
from yt.frontends.sph.data_structures import ParticleDataset
from yt.funcs import (
    get_memory_usage,
    is_sequence,
    iter_fields,
    mylog,
    only_on_root,
    validate_moment,
)
from yt.geometry import particle_deposit as particle_deposit
from yt.geometry.coordinates.cartesian_coordinates import all_data
from yt.loaders import load_uniform_grid
from yt.units._numpy_wrapper_functions import uconcatenate
from yt.units.unit_object import Unit  # type: ignore
from yt.units.yt_array import YTArray
from yt.utilities.exceptions import (
    YTNoAPIKey,
    YTNotInsideNotebook,
    YTParticleDepositionNotImplemented,
    YTTooManyVertices,
)
from yt.utilities.grid_data_format.writer import write_to_gdf
from yt.utilities.lib.cyoctree import CyOctree
from yt.utilities.lib.interpolators import ghost_zone_interpolate
from yt.utilities.lib.marching_cubes import march_cubes_grid, march_cubes_grid_flux
from yt.utilities.lib.misc_utilities import fill_region, fill_region_float
from yt.utilities.lib.pixelization_routines import (
    interpolate_sph_grid_gather,
    interpolate_sph_positions_gather,
    normalization_1d_utility,
    normalization_3d_utility,
    pixelize_sph_kernel_arbitrary_grid,
)
from yt.utilities.lib.quad_tree import QuadTree
from yt.utilities.math_utils import compute_stddev_image
from yt.utilities.minimal_representation import MinimalProjectionData
from yt.utilities.parallel_tools.parallel_analysis_interface import (
    communication_system,
    parallel_objects,
    parallel_root_only,
)
from yt.visualization.color_maps import get_colormap_lut


[docs] class YTStreamline(YTSelectionContainer1D): """ This is a streamline, which is a set of points defined as being parallel to some vector field. This object is typically accessed through the Streamlines.path function. The resulting arrays have their dimensionality reduced to one, and an ordered list of points at an (x,y) tuple along `axis` are available, as is the `t` field, which corresponds to a unitless measurement along the ray from start to end. Parameters ---------- positions : array-like List of streamline positions length : float The magnitude of the distance; dts will be divided by this fields : list of strings, optional If you want the object to pre-retrieve a set of fields, supply them here. This is not necessary. ds : dataset object Passed in to access the index kwargs : dict of items Any additional values are passed as field parameters that can be accessed by generated fields. Examples -------- >>> from yt.visualization.api import Streamlines >>> streamlines = Streamlines(ds, [0.5] * 3) >>> streamlines.integrate_through_volume() >>> stream = streamlines.path(0) >>> fig, ax = plt.subplots() >>> ax.set_yscale("log") >>> ax.plot(stream["t"], stream["gas", "density"], "-x") """ _type_name = "streamline" _con_args = ("positions",) sort_by = "t" def __init__(self, positions, length=1.0, fields=None, ds=None, **kwargs): YTSelectionContainer1D.__init__(self, ds, fields, **kwargs) self.positions = positions self.dts = np.empty_like(positions[:, 0]) self.dts[:-1] = np.sqrt( np.sum((self.positions[1:] - self.positions[:-1]) ** 2, axis=1) ) self.dts[-1] = self.dts[-1] self.length = length self.dts /= length self.ts = np.add.accumulate(self.dts) self._set_center(self.positions[0]) self.set_field_parameter("center", self.positions[0]) self._dts, self._ts = {}, {} # self._refresh_data() def _get_list_of_grids(self): # Get the value of the line at each LeftEdge and RightEdge LE = self.ds.grid_left_edge RE = self.ds.grid_right_edge # Check left faces first min_streampoint = np.min(self.positions, axis=0) max_streampoint = np.max(self.positions, axis=0) p = np.all((min_streampoint <= RE) & (max_streampoint > LE), axis=1) self._grids = self.index.grids[p] def _get_data_from_grid(self, grid, field): # No child masking here; it happens inside the mask cut mask = self._get_cut_mask(grid) if field == "dts": return self._dts[grid.id] if field == "t": return self._ts[grid.id] return grid[field].flat[mask] def _get_cut_mask(self, grid): points_in_grid = np.all(self.positions > grid.LeftEdge, axis=1) & np.all( self.positions <= grid.RightEdge, axis=1 ) pids = np.where(points_in_grid)[0] mask = np.zeros(points_in_grid.sum(), dtype="int64") dts = np.zeros(points_in_grid.sum(), dtype="float64") ts = np.zeros(points_in_grid.sum(), dtype="float64") for mi, (i, pos) in enumerate( zip(pids, self.positions[points_in_grid], strict=True) ): if not points_in_grid[i]: continue ci = ((pos - grid.LeftEdge) / grid.dds).astype("int64") if grid.child_mask[ci[0], ci[1], ci[2]] == 0: continue for j in range(3): ci[j] = min(ci[j], grid.ActiveDimensions[j] - 1) mask[mi] = np.ravel_multi_index(ci, grid.ActiveDimensions) dts[mi] = self.dts[i] ts[mi] = self.ts[i] self._dts[grid.id] = dts self._ts[grid.id] = ts return mask
[docs] class YTProj(YTSelectionContainer2D): _key_fields = YTSelectionContainer2D._key_fields + ["weight_field"] _con_args = ("axis", "field", "weight_field") _container_fields = ("px", "py", "pdx", "pdy", "weight_field") def __init__( self, field, axis, weight_field=None, center=None, ds=None, data_source=None, method="integrate", field_parameters=None, max_level=None, *, moment=1, ): super().__init__(axis, ds, field_parameters) if method == "mip": issue_deprecation_warning( "The 'mip' method value is a deprecated alias for 'max'. " "Please use max directly.", since="4.1", stacklevel=4, ) method = "max" if method == "sum": self.method = "integrate" self._sum_only = True else: self.method = method self._sum_only = False if self.method in ["max", "mip"]: self.func = np.max elif self.method == "min": self.func = np.min elif self.method == "integrate": self.func = np.sum # for the future else: raise NotImplementedError(self.method) validate_moment(moment, weight_field) self.moment = moment self._set_center(center) self._projected_units = {} if data_source is None: data_source = self.ds.all_data() if max_level is not None: data_source.max_level = max_level for k, v in data_source.field_parameters.items(): if k not in self.field_parameters or self._is_default_field_parameter(k): self.set_field_parameter(k, v) self.data_source = data_source if weight_field is None: self.weight_field = weight_field else: self.weight_field = self._determine_fields(weight_field)[0] for f in self._determine_fields(field): nodal_flag = self.ds._get_field_info(f).nodal_flag if any(nodal_flag): raise RuntimeError( "Nodal fields are currently not supported for projections." ) @property def blocks(self): return self.data_source.blocks @property def field(self): return [k for k in self.field_data.keys() if k not in self._container_fields]
[docs] def get_data(self, fields=None): fields = self._determine_fields(fields) sfields = [] if self.moment == 2: def _sq_field(field, data, fname: FieldKey): return data[fname] ** 2 for field in fields: fd = self.ds._get_field_info(field) ftype, fname = field self.ds.add_field( (ftype, f"tmp_{fname}_squared"), partial(_sq_field, fname=field), sampling_type=fd.sampling_type, units=f"({fd.units})*({fd.units})", ) sfields.append((ftype, f"tmp_{fname}_squared")) nfields = len(fields) nsfields = len(sfields) # We need a new tree for every single set of fields we add if nfields == 0: return if isinstance(self.ds, ParticleDataset): return tree = self._get_tree(nfields + nsfields) # This only needs to be done if we are in parallel; otherwise, we can # safely build the mesh as we go. if communication_system.communicators[-1].size > 1: for chunk in self.data_source.chunks([], "io", local_only=False): self._initialize_chunk(chunk, tree) _units_initialized = False with self.data_source._field_parameter_state(self.field_parameters): for chunk in parallel_objects( self.data_source.chunks([], "io", local_only=True) ): if not _units_initialized: self._initialize_projected_units(fields, chunk) _units_initialized = True self._handle_chunk(chunk, fields + sfields, tree) # if there's less than nprocs chunks, units won't be initialized # on all processors, so sync with _projected_units on rank 0 projected_units = self.comm.mpi_bcast(self._projected_units) self._projected_units = projected_units # Note that this will briefly double RAM usage if self.method in ["max", "mip"]: merge_style = -1 op = "max" elif self.method == "min": merge_style = -2 op = "min" elif self.method == "integrate": merge_style = 1 op = "sum" else: raise NotImplementedError # TODO: Add the combine operation xax = self.ds.coordinates.x_axis[self.axis] yax = self.ds.coordinates.y_axis[self.axis] ix, iy, ires, nvals, nwvals = tree.get_all(False, merge_style) px, pdx = self.ds.index._icoords_to_fcoords( ix[:, None], ires // self.ds.ires_factor, axes=(xax,) ) py, pdy = self.ds.index._icoords_to_fcoords( iy[:, None], ires // self.ds.ires_factor, axes=(yax,) ) px = px.ravel() py = py.ravel() pdx = pdx.ravel() pdy = pdy.ravel() np.multiply(pdx, 0.5, pdx) np.multiply(pdy, 0.5, pdy) nvals = self.comm.mpi_allreduce(nvals, op=op) nwvals = self.comm.mpi_allreduce(nwvals, op=op) if self.weight_field is not None: # If there are 0s remaining in the weight vals # this will not throw an error, but silently # return nans for vals where dividing by 0 # Leave as NaNs to be auto-masked by Matplotlib with np.errstate(invalid="ignore"): np.divide(nvals, nwvals[:, None], nvals) # We now convert to half-widths and center-points data = {} code_length = self.ds.domain_width.units data["px"] = self.ds.arr(px, code_length) data["py"] = self.ds.arr(py, code_length) data["weight_field"] = nwvals data["pdx"] = self.ds.arr(pdx, code_length) data["pdy"] = self.ds.arr(pdy, code_length) data["fields"] = nvals # Now we run the finalizer, which is ignored if we don't need it field_data = np.hsplit(data.pop("fields"), nfields + nsfields) for fi, field in enumerate(fields): mylog.debug("Setting field %s", field) input_units = self._projected_units[field] fvals = field_data[fi].ravel() if self.moment == 2: fvals = compute_stddev_image(field_data[fi + nfields].ravel(), fvals) self[field] = self.ds.arr(fvals, input_units) for i in list(data.keys()): self[i] = data.pop(i) mylog.info("Projection completed") if self.moment == 2: for field in sfields: self.ds.field_info.pop(field) self.tree = tree
[docs] def to_pw(self, fields=None, center="center", width=None, origin="center-window"): r"""Create a :class:`~yt.visualization.plot_window.PWViewerMPL` from this object. This is a bare-bones mechanism of creating a plot window from this object, which can then be moved around, zoomed, and on and on. All behavior of the plot window is relegated to that routine. """ pw = self._get_pw(fields, center, width, origin, "Projection") return pw
[docs] def plot(self, fields=None): if hasattr(self.data_source, "left_edge") and hasattr( self.data_source, "right_edge" ): left_edge = self.data_source.left_edge right_edge = self.data_source.right_edge center = (left_edge + right_edge) / 2.0 width = right_edge - left_edge xax = self.ds.coordinates.x_axis[self.axis] yax = self.ds.coordinates.y_axis[self.axis] lx, rx = left_edge[xax], right_edge[xax] ly, ry = left_edge[yax], right_edge[yax] width = (rx - lx), (ry - ly) else: width = self.ds.domain_width center = self.ds.domain_center pw = self._get_pw(fields, center, width, "native", "Projection") try: pw.show() except YTNotInsideNotebook: pass return pw
def _initialize_projected_units(self, fields, chunk): for field in self.data_source._determine_fields(fields): if field in self._projected_units: continue finfo = self.ds._get_field_info(field) if finfo.units is None: # First time calling a units="auto" field, infer units and cache # for future field accesses. finfo.units = str(chunk[field].units) field_unit = Unit(finfo.output_units, registry=self.ds.unit_registry) if self.method in ("min", "max") or self._sum_only: path_length_unit = Unit(registry=self.ds.unit_registry) else: ax_name = self.ds.coordinates.axis_name[self.axis] path_element_name = ("index", f"path_element_{ax_name}") path_length_unit = self.ds.field_info[path_element_name].units path_length_unit = Unit( path_length_unit, registry=self.ds.unit_registry ) # Only convert to appropriate unit system for path # elements that aren't angles if not path_length_unit.is_dimensionless: path_length_unit = path_length_unit.get_base_equivalent( unit_system=self.ds.unit_system ) if self.weight_field is None: self._projected_units[field] = field_unit * path_length_unit else: self._projected_units[field] = field_unit
[docs] class YTParticleProj(YTProj): """ A projection operation optimized for SPH particle data. """ _type_name = "particle_proj" def __init__( self, field, axis, weight_field=None, center=None, ds=None, data_source=None, method="integrate", field_parameters=None, max_level=None, *, moment=1, ): super().__init__( field, axis, weight_field, center, ds, data_source, method, field_parameters, max_level, moment=moment, ) def _handle_chunk(self, chunk, fields, tree): raise NotImplementedError("Particle projections have not yet been implemented")
[docs] class YTQuadTreeProj(YTProj): """ This is a data object corresponding to a line integral through the simulation domain. This object is typically accessed through the `proj` object that hangs off of index objects. YTQuadTreeProj is a projection of a `field` along an `axis`. The field can have an associated `weight_field`, in which case the values are multiplied by a weight before being summed, and then divided by the sum of that weight; the two fundamental modes of operating are direct line integral (no weighting) and average along a line of sight (weighting.) What makes `proj` different from the standard projection mechanism is that it utilizes a quadtree data structure, rather than the old mechanism for projections. It will not run in parallel, but serial runs should be substantially faster. Note also that lines of sight are integrated at every projected finest-level cell. Parameters ---------- field : string This is the field which will be "projected" along the axis. If multiple are specified (in a list) they will all be projected in the first pass. axis : int The axis along which to slice. Can be 0, 1, or 2 for x, y, z. weight_field : string If supplied, the field being projected will be multiplied by this weight value before being integrated, and at the conclusion of the projection the resultant values will be divided by the projected `weight_field`. center : array_like, optional The 'center' supplied to fields that use it. Note that this does not have to have `coord` as one value. Strictly optional. data_source : `yt.data_objects.data_containers.YTSelectionContainer`, optional If specified, this will be the data source used for selecting regions to project. method : string, optional The method of projection to be performed. "integrate" : integration along the axis "mip" : maximum intensity projection (deprecated) "max" : maximum intensity projection "min" : minimum intensity projection "sum" : same as "integrate", except that we don't multiply by the path length WARNING: The "sum" option should only be used for uniform resolution grid datasets, as other datasets may result in unphysical images. style : string, optional The same as the method keyword. Deprecated as of version 3.0.2. Please use method keyword instead. field_parameters : dict of items Values to be passed as field parameters that can be accessed by generated fields. moment : integer, optional for a weighted projection, moment = 1 (the default) corresponds to a weighted average. moment = 2 corresponds to a weighted standard deviation. Examples -------- >>> ds = load("RedshiftOutput0005") >>> prj = ds.proj(("gas", "density"), 0) >>> print(proj["gas", "density"]) """ _type_name = "quad_proj" def __init__( self, field, axis, weight_field=None, center=None, ds=None, data_source=None, method="integrate", field_parameters=None, max_level=None, *, moment=1, ): super().__init__( field, axis, weight_field, center, ds, data_source, method, field_parameters, max_level, moment=moment, ) if not self.deserialize(field): self.get_data(field) self.serialize() @property def _mrep(self): return MinimalProjectionData(self)
[docs] def deserialize(self, fields): if not ytcfg.get("yt", "serialize"): return False for field in fields: self[field] = None deserialized_successfully = False store_file = self.ds.parameter_filename + ".yt" if os.path.isfile(store_file): deserialized_successfully = self._mrep.restore(store_file, self.ds) if deserialized_successfully: mylog.info("Using previous projection data from %s", store_file) for field, field_data in self._mrep.field_data.items(): self[field] = field_data if not deserialized_successfully: for field in fields: del self[field] return deserialized_successfully
[docs] def serialize(self): if not ytcfg.get("yt", "serialize"): return self._mrep.store(self.ds.parameter_filename + ".yt")
def _get_tree(self, nvals): xax = self.ds.coordinates.x_axis[self.axis] yax = self.ds.coordinates.y_axis[self.axis] xd = self.ds.domain_dimensions[xax] yd = self.ds.domain_dimensions[yax] bounds = ( self.ds.domain_left_edge[xax], self.ds.domain_right_edge[xax], self.ds.domain_left_edge[yax], self.ds.domain_right_edge[yax], ) return QuadTree( np.array([xd, yd], dtype="int64"), nvals, bounds, method=self.method ) def _initialize_chunk(self, chunk, tree): icoords = chunk.icoords xax = self.ds.coordinates.x_axis[self.axis] yax = self.ds.coordinates.y_axis[self.axis] i1 = icoords[:, xax] i2 = icoords[:, yax] ilevel = chunk.ires * self.ds.ires_factor tree.initialize_chunk(i1, i2, ilevel) def _handle_chunk(self, chunk, fields, tree): mylog.debug( "Adding chunk (%s) to tree (%0.3e GB RAM)", chunk.ires.size, get_memory_usage() / 1024.0, ) if self.method in ("min", "max") or self._sum_only: dl = self.ds.quan(1.0, "") else: ax_name = self.ds.coordinates.axis_name[self.axis] dl = chunk["index", f"path_element_{ax_name}"] # This is done for cases where our path element does not have a CGS # equivalent. Once "preferred units" have been implemented, this # will not be necessary at all, as the final conversion will occur # at the display layer. if not dl.units.is_dimensionless: dl.convert_to_units(self.ds.unit_system["length"]) v = np.empty((chunk.ires.size, len(fields)), dtype="float64") for i, field in enumerate(fields): d = chunk[field] * dl v[:, i] = d if self.weight_field is not None: w = chunk[self.weight_field] np.multiply(v, w[:, None], v) np.multiply(w, dl, w) else: w = np.ones(chunk.ires.size, dtype="float64") icoords = chunk.icoords xax = self.ds.coordinates.x_axis[self.axis] yax = self.ds.coordinates.y_axis[self.axis] i1 = icoords[:, xax] i2 = icoords[:, yax] ilevel = chunk.ires * self.ds.ires_factor tree.add_chunk_to_tree(i1, i2, ilevel, v, w)
[docs] class YTCoveringGrid(YTSelectionContainer3D): """A 3D region with all data extracted to a single, specified resolution. Left edge should align with a cell boundary, but defaults to the closest cell boundary. Parameters ---------- level : int The resolution level data to which data will be gridded. Level 0 is the root grid dx for that dataset. (The grid resolution will be simulation size / 2**level along each grid axis.) left_edge : array_like The left edge of the region to be extracted. Specify units by supplying a YTArray, otherwise code length units are assumed. dims : array_like Number of cells along each axis of resulting covering_grid fields : array_like, optional A list of fields that you'd like pre-generated for your object num_ghost_zones : integer, optional The number of padding ghost zones used when accessing fields. data_source : An existing data object to intersect with the covering grid. Grid points outside the data_source will exist as empty values. Examples -------- >>> cube = ds.covering_grid(2, left_edge=[0.0, 0.0, 0.0], dims=[128, 128, 128]) """ _spatial = True _type_name = "covering_grid" _con_args = ("level", "left_edge", "ActiveDimensions") _container_fields = ( ("index", "dx"), ("index", "dy"), ("index", "dz"), ("index", "x"), ("index", "y"), ("index", "z"), ) _base_grid = None def __init__( self, level, left_edge, dims, fields=None, ds=None, num_ghost_zones=0, use_pbar=True, field_parameters=None, *, data_source=None, ): if field_parameters is None: center = None else: center = field_parameters.get("center", None) super().__init__(center, ds, field_parameters, data_source=data_source) self.level = level self.left_edge = self._sanitize_edge(left_edge) self.ActiveDimensions = self._sanitize_dims(dims) rdx = self.ds.domain_dimensions * self.ds.relative_refinement(0, level) # normalize dims as a non-zero dim array dims = np.array(list(always_iterable(dims))) rdx[np.where(dims - 2 * num_ghost_zones <= 1)] = 1 # issue 602 self.base_dds = self.ds.domain_width / self.ds.domain_dimensions self.dds = self.ds.domain_width / rdx.astype("float64") self.right_edge = self.left_edge + self.ActiveDimensions * self.dds self._num_ghost_zones = num_ghost_zones self._use_pbar = use_pbar self.global_startindex = ( np.rint((self.left_edge - self.ds.domain_left_edge) / self.dds).astype( "int64" ) + self.ds.domain_offset ) self._setup_data_source() self.get_data(fields)
[docs] def get_global_startindex(self): r"""Get the global start index of the covering grid.""" return self.global_startindex
[docs] def to_xarray(self, fields=None): r"""Export this fixed-resolution object to an xarray Dataset This function will take a regularized grid and optionally a list of fields and return an xarray Dataset object. If xarray is not importable, this will raise ImportError. Parameters ---------- fields : list of strings or tuple field names, default None If this is supplied, it is the list of fields to be exported into the data frame. If not supplied, whatever fields presently exist will be used. Returns ------- arr : Dataset The data contained in the object. Examples -------- >>> dd = ds.r[::256j, ::256j, ::256j] >>> xf1 = dd.to_xarray([("gas", "density"), ("gas", "temperature")]) >>> dd["gas", "velocity_magnitude"] >>> xf2 = dd.to_xarray() """ import xarray as xr data = {} coords = {} for f in fields or self.field_data.keys(): data[f] = { "dims": ( "x", "y", "z", ), "data": self[f], "attrs": {"units": str(self[f].uq)}, } # We have our data, so now we generate both our coordinates and our metadata. LE = self.LeftEdge + self.dds / 2.0 RE = self.RightEdge - self.dds / 2.0 N = self.ActiveDimensions u = str(LE.uq) for i, ax in enumerate("xyz"): coords[ax] = { "dims": (ax,), "data": np.mgrid[LE[i] : RE[i] : N[i] * 1j], "attrs": {"units": u}, } return xr.Dataset.from_dict({"data_vars": data, "coords": coords})
@property def icoords(self): ic = np.indices(self.ActiveDimensions).astype("int64") return np.column_stack( [ i.ravel() + gi for i, gi in zip(ic, self.get_global_startindex(), strict=True) ] ) @property def fwidth(self): fw = np.ones((self.ActiveDimensions.prod(), 3), dtype="float64") fw *= self.dds return fw @property def fcoords(self): LE = self.LeftEdge + self.dds / 2.0 RE = self.RightEdge - self.dds / 2.0 N = self.ActiveDimensions fc = np.mgrid[ LE[0] : RE[0] : N[0] * 1j, LE[1] : RE[1] : N[1] * 1j, LE[2] : RE[2] : N[2] * 1j, ] return np.column_stack([f.ravel() for f in fc]) @property def ires(self): tr = np.ones(self.ActiveDimensions.prod(), dtype="int64") tr *= self.level return tr
[docs] def set_field_parameter(self, name, val): super().set_field_parameter(name, val) if self._data_source is not None: self._data_source.set_field_parameter(name, val)
def _sanitize_dims(self, dims): if not is_sequence(dims): dims = [dims] * len(self.ds.domain_left_edge) if len(dims) != len(self.ds.domain_left_edge): raise RuntimeError( "Length of dims must match the dimensionality of the dataset" ) return np.array(dims, dtype="int32") def _sanitize_edge(self, edge): if not is_sequence(edge): edge = [edge] * len(self.ds.domain_left_edge) if len(edge) != len(self.ds.domain_left_edge): raise RuntimeError( "Length of edges must match the dimensionality of the dataset" ) if hasattr(edge, "units"): if edge.units.registry is self.ds.unit_registry: return edge edge_units = edge.units.copy() edge_units.registry = self.ds.unit_registry else: edge_units = "code_length" return self.ds.arr(edge, edge_units, dtype="float64") def _reshape_vals(self, arr): if len(arr.shape) == 3: return arr return arr.reshape(self.ActiveDimensions, order="C") @property def shape(self): return tuple(self.ActiveDimensions.tolist()) def _setup_data_source(self): reg = self.ds.region(self.center, self.left_edge, self.right_edge) if self._data_source is None: # note: https://github.com/yt-project/yt/pull/4063 implemented # a data_source kwarg for YTCoveringGrid, but not YTArbitraryGrid # so as of 4063, this will always be True for YTArbitraryGrid # instances. self._data_source = reg else: self._data_source = self.ds.intersection([self._data_source, reg]) self._data_source.min_level = 0 self._data_source.max_level = self.level # This triggers "special" behavior in the RegionSelector to ensure we # select *cells* whose bounding boxes overlap with our region, not just # their cell centers. self._data_source.loose_selection = True
[docs] def get_data(self, fields=None): if fields is None: return fields = self._determine_fields(fields) fields_to_get = [f for f in fields if f not in self.field_data] fields_to_get = self._identify_dependencies(fields_to_get) if len(fields_to_get) == 0: return try: fill, gen, part, alias = self._split_fields(fields_to_get) except NeedsGridType as e: if self._num_ghost_zones == 0: num_ghost_zones = self._num_ghost_zones raise RuntimeError( "Attempting to access a field that needs ghost zones, but " f"{num_ghost_zones = }. You should create the covering grid " "with nonzero num_ghost_zones." ) from e else: raise # checking if we have a sph particles if len(part) == 0: is_sph_field = False else: is_sph_field = self.ds.field_info[part[0]].is_sph_field if len(part) > 0 and len(alias) == 0: if is_sph_field: self._fill_sph_particles(fields) for field in fields: if field in gen: gen.remove(field) else: self._fill_particles(part) if len(fill) > 0: self._fill_fields(fill) for a, f in sorted(alias.items()): if f.sampling_type == "particle" and not is_sph_field: self[a] = self._data_source[f] else: self[a] = f(self) self.field_data[a].convert_to_units(f.output_units) if len(gen) > 0: part_gen = [] cell_gen = [] for field in gen: finfo = self.ds.field_info[field] if finfo.sampling_type == "particle": part_gen.append(field) else: cell_gen.append(field) self._generate_fields(cell_gen) for p in part_gen: self[p] = self._data_source[p]
def _split_fields(self, fields_to_get): fill, gen = self.index._split_fields(fields_to_get) particles = [] alias = {} for field in gen: finfo = self.ds._get_field_info(field) if finfo.is_alias: alias[field] = finfo continue try: finfo.check_available(self) except NeedsOriginalGrid: fill.append(field) for field in fill: finfo = self.ds._get_field_info(field) if finfo.sampling_type == "particle": particles.append(field) gen = [f for f in gen if f not in fill and f not in alias] fill = [f for f in fill if f not in particles] return fill, gen, particles, alias def _fill_particles(self, part): for p in part: self[p] = self._data_source[p] def _check_sph_type(self, finfo): """ Check if a particle field has an SPH type. There are several ways that this can happen, checked in this order: 1. If the field type is a known particle filter, and is in the list of SPH ptypes, use this type 2. If the field is an alias of an SPH field, but its type is not "gas", use this type 3. Otherwise, if the field type is not in the SPH types list and it is not "gas", we fail If we get through without erroring out, we either have a known SPH particle filter, an alias of an SPH field, the default SPH ptype, or "gas" for an SPH field. Then we return the particle type. """ ftype, fname = finfo.name sph_ptypes = self.ds._sph_ptypes ptype = sph_ptypes[0] err = KeyError(f"{ftype} is not a SPH particle type!") if ftype in self.ds.known_filters: if ftype not in sph_ptypes: raise err else: ptype = ftype elif finfo.is_alias: if finfo.alias_name[0] not in sph_ptypes: raise err elif ftype != "gas": ptype = ftype elif ftype not in sph_ptypes and ftype != "gas": raise err return ptype def _fill_sph_particles(self, fields): from tqdm import tqdm # checks that we have the field and gets information fields = [f for f in fields if f not in self.field_data] if len(fields) == 0: return smoothing_style = getattr(self.ds, "sph_smoothing_style", "scatter") normalize = getattr(self.ds, "use_sph_normalization", True) kernel_name = getattr(self.ds, "kernel_name", "cubic") bounds, size = self._get_grid_bounds_size() period = self.ds.coordinates.period.copy() if hasattr(period, "in_units"): period = period.in_units("code_length").d # check periodicity per dimension is_periodic = self.ds.periodicity if smoothing_style == "scatter": for field in fields: fi = self.ds._get_field_info(field) ptype = self._check_sph_type(fi) buff = np.zeros(size, dtype="float64") if normalize: buff_den = np.zeros(size, dtype="float64") pbar = tqdm(desc=f"Interpolating SPH field {field}") for chunk in self._data_source.chunks([field], "io"): px = chunk[ptype, "particle_position_x"].in_base("code").d py = chunk[ptype, "particle_position_y"].in_base("code").d pz = chunk[ptype, "particle_position_z"].in_base("code").d hsml = chunk[ptype, "smoothing_length"].in_base("code").d mass = chunk[ptype, "particle_mass"].in_base("code").d dens = chunk[ptype, "density"].in_base("code").d field_quantity = chunk[field].d pixelize_sph_kernel_arbitrary_grid( buff, px, py, pz, hsml, mass, dens, field_quantity, bounds, pbar=pbar, check_period=is_periodic, period=period, kernel_name=kernel_name, ) if normalize: pixelize_sph_kernel_arbitrary_grid( buff_den, px, py, pz, hsml, mass, dens, np.ones(dens.shape[0]), bounds, pbar=pbar, check_period=is_periodic, period=period, kernel_name=kernel_name, ) if normalize: normalization_3d_utility(buff, buff_den) self[field] = self.ds.arr(buff, fi.units) pbar.close() if smoothing_style == "gather": num_neighbors = getattr(self.ds, "num_neighbors", 32) for field in fields: fi = self.ds._get_field_info(field) ptype = self._check_sph_type(fi) buff = np.zeros(size, dtype="float64") fields_to_get = [ "particle_position", "density", "particle_mass", "smoothing_length", field[1], ] all_fields = all_data(self.ds, ptype, fields_to_get, kdtree=True) interpolate_sph_grid_gather( buff, all_fields["particle_position"], bounds, all_fields["smoothing_length"], all_fields["particle_mass"], all_fields["density"], all_fields[field[1]].in_units(fi.units), self.ds.index.kdtree, use_normalization=normalize, num_neigh=num_neighbors, ) self[field] = self.ds.arr(buff, fi.units) def _fill_fields(self, fields): fields = [f for f in fields if f not in self.field_data] if len(fields) == 0: return output_fields = [ np.zeros(self.ActiveDimensions, dtype="float64") for field in fields ] domain_dims = self.ds.domain_dimensions.astype( "int64" ) * self.ds.relative_refinement(0, self.level) refine_by = self.ds.refine_by if not is_sequence(self.ds.refine_by): refine_by = [refine_by, refine_by, refine_by] refine_by = np.array(refine_by, dtype="i8") for chunk in parallel_objects(self._data_source.chunks(fields, "io")): input_fields = [chunk[field] for field in fields] # NOTE: This usage of "refine_by" is actually *okay*, because it's # being used with respect to iref, which is *already* scaled! fill_region( input_fields, output_fields, self.level, self.global_startindex, chunk.icoords, chunk.ires, domain_dims, refine_by, ) if self.comm.size > 1: for i in range(len(fields)): output_fields[i] = self.comm.mpi_allreduce(output_fields[i], op="sum") for field, v in zip(fields, output_fields, strict=True): fi = self.ds._get_field_info(field) self[field] = self.ds.arr(v, fi.units) def _generate_container_field(self, field): rv = self.ds.arr(np.ones(self.ActiveDimensions, dtype="float64"), "") axis_name = self.ds.coordinates.axis_name if field == ("index", f"d{axis_name[0]}"): np.multiply(rv, self.dds[0], rv) elif field == ("index", f"d{axis_name[1]}"): np.multiply(rv, self.dds[1], rv) elif field == ("index", f"d{axis_name[2]}"): np.multiply(rv, self.dds[2], rv) elif field == ("index", axis_name[0]): x = np.mgrid[ self.left_edge[0] + 0.5 * self.dds[0] : self.right_edge[0] - 0.5 * self.dds[0] : self.ActiveDimensions[0] * 1j ] np.multiply(rv, x[:, None, None], rv) elif field == ("index", axis_name[1]): y = np.mgrid[ self.left_edge[1] + 0.5 * self.dds[1] : self.right_edge[1] - 0.5 * self.dds[1] : self.ActiveDimensions[1] * 1j ] np.multiply(rv, y[None, :, None], rv) elif field == ("index", axis_name[2]): z = np.mgrid[ self.left_edge[2] + 0.5 * self.dds[2] : self.right_edge[2] - 0.5 * self.dds[2] : self.ActiveDimensions[2] * 1j ] np.multiply(rv, z[None, None, :], rv) else: raise KeyError(field) return rv @property def LeftEdge(self): return self.left_edge @property def RightEdge(self): return self.right_edge
[docs] def deposit(self, positions, fields=None, method=None, kernel_name="cubic"): cls = getattr(particle_deposit, f"deposit_{method}", None) if cls is None: raise YTParticleDepositionNotImplemented(method) # We allocate number of zones, not number of octs. Everything # inside this is Fortran ordered because of the ordering in the # octree deposit routines, so we reverse it here to match the # convention there nvals = tuple(self.ActiveDimensions[::-1]) # append a dummy dimension because we are only depositing onto # one grid op = cls(nvals + (1,), kernel_name) op.initialize() op.process_grid(self, positions, fields) # Fortran-ordered, so transpose. vals = op.finalize().transpose() # squeeze dummy dimension we appended above return np.squeeze(vals, axis=0)
[docs] def write_to_gdf(self, gdf_path, fields, nprocs=1, field_units=None, **kwargs): r""" Write the covering grid data to a GDF file. Parameters ---------- gdf_path : string Pathname of the GDF file to write. fields : list of strings Fields to write to the GDF file. nprocs : integer, optional Split the covering grid into *nprocs* subgrids before writing to the GDF file. Default: 1 field_units : dictionary, optional Dictionary of units to convert fields to. If not set, fields are in their default units. All remaining keyword arguments are passed to yt.utilities.grid_data_format.writer.write_to_gdf. Examples -------- >>> cube.write_to_gdf( ... "clumps.h5", ... [("gas", "density"), ("gas", "temperature")], ... nprocs=16, ... overwrite=True, ... ) """ data = {} for field in fields: if field in field_units: units = field_units[field] else: units = str(self[field].units) data[field] = (self[field].in_units(units).v, units) le = self.left_edge.v re = self.right_edge.v bbox = np.array([[l, r] for l, r in zip(le, re, strict=True)]) ds = load_uniform_grid( data, self.ActiveDimensions, bbox=bbox, length_unit=self.ds.length_unit, time_unit=self.ds.time_unit, mass_unit=self.ds.mass_unit, nprocs=nprocs, sim_time=self.ds.current_time.v, ) write_to_gdf(ds, gdf_path, **kwargs)
def _get_grid_bounds_size(self): dd = self.ds.domain_width / 2**self.level bounds = np.zeros(6, dtype="float64") bounds[0] = self.left_edge[0].in_base("code") bounds[1] = bounds[0] + dd[0].d * self.ActiveDimensions[0] bounds[2] = self.left_edge[1].in_base("code") bounds[3] = bounds[2] + dd[1].d * self.ActiveDimensions[1] bounds[4] = self.left_edge[2].in_base("code") bounds[5] = bounds[4] + dd[2].d * self.ActiveDimensions[2] size = np.ones(3, dtype="int64") * 2**self.level return bounds, size
[docs] def to_fits_data(self, fields, length_unit=None): r"""Export a set of gridded fields to a FITS file. This will export a set of FITS images of either the fields specified or all the fields already in the object. Parameters ---------- fields : list of strings These fields will be pixelized and output. If "None", the keys of the FRB will be used. length_unit : string, optional the length units that the coordinates are written in. The default is to use the default length unit of the dataset. """ from yt.visualization.fits_image import FITSImageData if length_unit is None: length_unit = self.ds.length_unit fields = list(iter_fields(fields)) fid = FITSImageData(self, fields, length_unit=length_unit) return fid
[docs] class YTArbitraryGrid(YTCoveringGrid): """A 3D region with arbitrary bounds and dimensions. In contrast to the Covering Grid, this object accepts a left edge, a right edge, and dimensions. This allows it to be used for creating 3D particle deposition fields that are independent of the underlying mesh, whether that is yt-generated or from the simulation data. For example, arbitrary boxes around particles can be drawn and particle deposition fields can be created. This object will refuse to generate any fluid fields. Parameters ---------- left_edge : array_like The left edge of the region to be extracted right_edge : array_like The left edge of the region to be extracted dims : array_like Number of cells along each axis of resulting grid. Examples -------- >>> obj = ds.arbitrary_grid( ... [0.0, 0.0, 0.0], [0.99, 0.99, 0.99], dims=[128, 128, 128] ... ) """ _spatial = True _type_name = "arbitrary_grid" _con_args = ("left_edge", "right_edge", "ActiveDimensions") _container_fields = ( ("index", "dx"), ("index", "dy"), ("index", "dz"), ("index", "x"), ("index", "y"), ("index", "z"), ) def __init__(self, left_edge, right_edge, dims, ds=None, field_parameters=None): if field_parameters is None: center = None else: center = field_parameters.get("center", None) YTSelectionContainer3D.__init__(self, center, ds, field_parameters) self.left_edge = self._sanitize_edge(left_edge) self.right_edge = self._sanitize_edge(right_edge) self.ActiveDimensions = self._sanitize_dims(dims) self.dds = self.base_dds = ( self.right_edge - self.left_edge ) / self.ActiveDimensions self.level = 99 self._setup_data_source() def _fill_fields(self, fields): fields = [f for f in fields if f not in self.field_data] if len(fields) == 0: return # It may be faster to adapt fill_region_float to fill multiple fields # instead of looping here for field in fields: dest = np.zeros(self.ActiveDimensions, dtype="float64") for chunk in self._data_source.chunks(fields, "io"): fill_region_float( chunk.fcoords, chunk.fwidth, chunk[field], self.left_edge, self.right_edge, dest, 1, self.ds.domain_width, int(any(self.ds.periodicity)), ) fi = self.ds._get_field_info(field) self[field] = self.ds.arr(dest, fi.units) def _get_grid_bounds_size(self): bounds = np.empty(6, dtype="float64") bounds[0] = self.left_edge[0].in_base("code") bounds[2] = self.left_edge[1].in_base("code") bounds[4] = self.left_edge[2].in_base("code") bounds[1] = self.right_edge[0].in_base("code") bounds[3] = self.right_edge[1].in_base("code") bounds[5] = self.right_edge[2].in_base("code") size = self.ActiveDimensions return bounds, size
[docs] class LevelState: current_dx = None current_dims = None current_level = None global_startindex = None old_global_startindex = None fields = None data_source = None # These are all cached here as numpy arrays, without units, in # code_lengths. domain_width = None domain_left_edge = None domain_right_edge = None left_edge = None right_edge = None base_dx = None dds = None
[docs] class YTSmoothedCoveringGrid(YTCoveringGrid): """A 3D region with all data extracted and interpolated to a single, specified resolution. (Identical to covering_grid, except that it interpolates.) Smoothed covering grids start at level 0, interpolating to fill the region to level 1, replacing any cells actually covered by level 1 data, and then recursively repeating this process until it reaches the specified `level`. Parameters ---------- level : int The resolution level data is uniformly gridded at left_edge : array_like The left edge of the region to be extracted dims : array_like Number of cells along each axis of resulting covering_grid. fields : array_like, optional A list of fields that you'd like pre-generated for your object Example ------- cube = ds.smoothed_covering_grid(2, left_edge=[0.0, 0.0, 0.0], \ dims=[128, 128, 128]) """ _type_name = "smoothed_covering_grid" filename = None _min_level = None @wraps(YTCoveringGrid.__init__) # type: ignore [misc] def __init__(self, *args, **kwargs): ds = kwargs["ds"] self._base_dx = ( ds.domain_right_edge - ds.domain_left_edge ) / ds.domain_dimensions.astype("float64") self.global_endindex = None YTCoveringGrid.__init__(self, *args, **kwargs) self._final_start_index = self.global_startindex def _setup_data_source(self, level_state=None): if level_state is None: super()._setup_data_source() return # We need a buffer region to allow for zones that contribute to the # interpolation but are not directly inside our bounds level_state.data_source = self.ds.region( self.center, level_state.left_edge - level_state.current_dx, level_state.right_edge + level_state.current_dx, ) level_state.data_source.min_level = level_state.current_level level_state.data_source.max_level = level_state.current_level self._pdata_source = self.ds.region( self.center, level_state.left_edge - level_state.current_dx, level_state.right_edge + level_state.current_dx, ) self._pdata_source.min_level = level_state.current_level self._pdata_source.max_level = level_state.current_level def _compute_minimum_level(self): # This attempts to determine the minimum level that we should be # starting on for this box. It does this by identifying the minimum # level that could contribute to the minimum bounding box at that # level; that means that all cells from coarser levels will be replaced. if self._min_level is not None: return self._min_level ils = LevelState() min_level = 0 for l in range(self.level, 0, -1): dx = self._base_dx / self.ds.relative_refinement(0, l) start_index, end_index, dims = self._minimal_box(dx) ils.left_edge = start_index * dx + self.ds.domain_left_edge ils.right_edge = ils.left_edge + dx * dims ils.current_dx = dx ils.current_level = l self._setup_data_source(ils) # Reset the max_level ils.data_source.min_level = 0 ils.data_source.max_level = l ils.data_source.loose_selection = False min_level = self.level for chunk in ils.data_source.chunks([], "io"): # With our odd selection methods, we can sometimes get no-sized ires. ir = chunk.ires if ir.size == 0: continue min_level = min(ir.min(), min_level) if min_level >= l: break self._min_level = min_level return min_level def _fill_fields(self, fields): fields = [f for f in fields if f not in self.field_data] if len(fields) == 0: return ls = self._initialize_level_state(fields) min_level = self._compute_minimum_level() # NOTE: This usage of "refine_by" is actually *okay*, because it's # being used with respect to iref, which is *already* scaled! refine_by = self.ds.refine_by if not is_sequence(self.ds.refine_by): refine_by = [refine_by, refine_by, refine_by] refine_by = np.array(refine_by, dtype="i8") runtime_errors_count = 0 for level in range(self.level + 1): if level < min_level: self._update_level_state(ls) continue nd = self.ds.dimensionality refinement = np.zeros_like(ls.base_dx) refinement += self.ds.relative_refinement(0, ls.current_level) refinement[nd:] = 1 domain_dims = self.ds.domain_dimensions * refinement domain_dims = domain_dims.astype("int64") tot = ls.current_dims.prod() for chunk in ls.data_source.chunks(fields, "io"): chunk[fields[0]] input_fields = [chunk[field] for field in fields] tot -= fill_region( input_fields, ls.fields, ls.current_level, ls.global_startindex, chunk.icoords, chunk.ires, domain_dims, refine_by, ) if level == 0 and tot != 0: runtime_errors_count += 1 self._update_level_state(ls) if runtime_errors_count: warnings.warn( "Something went wrong during field computation. " "This is likely due to missing ghost-zones support " f"in class {type(self.ds)}", category=RuntimeWarning, stacklevel=1, ) mylog.debug("Caught %d runtime errors.", runtime_errors_count) for field, v in zip(fields, ls.fields, strict=True): if self.level > 0: v = v[1:-1, 1:-1, 1:-1] fi = self.ds._get_field_info(field) self[field] = self.ds.arr(v, fi.units) def _initialize_level_state(self, fields): ls = LevelState() ls.domain_width = self.ds.domain_width ls.domain_left_edge = self.ds.domain_left_edge ls.domain_right_edge = self.ds.domain_right_edge ls.base_dx = self._base_dx ls.dds = self.dds ls.left_edge = self.left_edge ls.right_edge = self.right_edge for att in ( "domain_width", "domain_left_edge", "domain_right_edge", "left_edge", "right_edge", "base_dx", "dds", ): setattr(ls, att, getattr(ls, att).in_units("code_length").d) ls.current_dx = ls.base_dx ls.current_level = 0 ls.global_startindex, end_index, idims = self._minimal_box(ls.current_dx) ls.current_dims = idims.astype("int32") ls.left_edge = ls.global_startindex * ls.current_dx + self.ds.domain_left_edge.d ls.right_edge = ls.left_edge + ls.current_dims * ls.current_dx ls.fields = [np.zeros(idims, dtype="float64") - 999 for field in fields] self._setup_data_source(ls) return ls def _minimal_box(self, dds): LL = self.left_edge.d - self.ds.domain_left_edge.d # Nudge in case we're on the edge LL += np.finfo(np.float64).eps LS = self.right_edge.d - self.ds.domain_left_edge.d LS += np.finfo(np.float64).eps cell_start = LL / dds # This is the cell we're inside cell_end = LS / dds if self.level == 0: start_index = np.array(np.floor(cell_start), dtype="int64") end_index = np.array(np.ceil(cell_end), dtype="int64") dims = np.rint((self.ActiveDimensions * self.dds.d) / dds).astype("int64") else: # Give us one buffer start_index = np.rint(cell_start).astype("int64") - 1 # How many root cells do we occupy? end_index = np.rint(cell_end).astype("int64") dims = end_index - start_index + 1 return start_index, end_index, dims.astype("int32") def _update_level_state(self, level_state): ls = level_state if ls.current_level >= self.level: return rf = float(self.ds.relative_refinement(ls.current_level, ls.current_level + 1)) ls.current_level += 1 nd = self.ds.dimensionality refinement = np.zeros_like(ls.base_dx) refinement += self.ds.relative_refinement(0, ls.current_level) refinement[nd:] = 1 ls.current_dx = ls.base_dx / refinement ls.old_global_startindex = ls.global_startindex ls.global_startindex, end_index, ls.current_dims = self._minimal_box( ls.current_dx ) ls.left_edge = ls.global_startindex * ls.current_dx + self.ds.domain_left_edge.d ls.right_edge = ls.left_edge + ls.current_dims * ls.current_dx input_left = (level_state.old_global_startindex) * rf + 1 new_fields = [] for input_field in level_state.fields: output_field = np.zeros(ls.current_dims, dtype="float64") output_left = level_state.global_startindex + 0.5 ghost_zone_interpolate( rf, input_field, input_left, output_field, output_left ) new_fields.append(output_field) level_state.fields = new_fields self._setup_data_source(ls)
[docs] class YTSurface(YTSelectionContainer3D): r"""This surface object identifies isocontours on a cell-by-cell basis, with no consideration of global connectedness, and returns the vertices of the Triangles in that isocontour. This object simply returns the vertices of all the triangles calculated by the `marching cubes <https://en.wikipedia.org/wiki/Marching_cubes>`_ algorithm; for more complex operations, such as identifying connected sets of cells above a given threshold, see the extract_connected_sets function. This is more useful for calculating, for instance, total isocontour area, or visualizing in an external program (such as `MeshLab <http://www.meshlab.net>`_.) The object has the properties .vertices and will sample values if a field is requested. The values are interpolated to the center of a given face. Parameters ---------- data_source : YTSelectionContainer This is the object which will used as a source surface_field : string Any field that can be obtained in a data object. This is the field which will be isocontoured. field_value : float, YTQuantity, or unit tuple The value at which the isocontour should be calculated. Examples -------- This will create a data object, find a nice value in the center, and output the vertices to "triangles.obj" after rescaling them. >>> from yt.units import kpc >>> sp = ds.sphere("max", (10, "kpc")) >>> surf = ds.surface(sp, ("gas", "density"), 5e-27) >>> print(surf["gas", "temperature"]) >>> print(surf.vertices) >>> bounds = [ ... (sp.center[i] - 5.0 * kpc, sp.center[i] + 5.0 * kpc) for i in range(3) ... ] >>> surf.export_ply("my_galaxy.ply", bounds=bounds) """ _type_name = "surface" _con_args = ("data_source", "surface_field", "field_value") _container_fields = ( ("index", "dx"), ("index", "dy"), ("index", "dz"), ("index", "x"), ("index", "y"), ("index", "z"), ) def __init__(self, data_source, surface_field, field_value, ds=None): self.data_source = data_source self.surface_field = data_source._determine_fields(surface_field)[0] finfo = data_source.ds.field_info[self.surface_field] try: self.field_value = field_value.to(finfo.units) except AttributeError: if isinstance(field_value, tuple): self.field_value = data_source.ds.quan(*field_value) self.field_value = self.field_value.to(finfo.units) else: self.field_value = data_source.ds.quan(field_value, finfo.units) self.vertex_samples = YTFieldData() center = data_source.get_field_parameter("center") super().__init__(center=center, ds=ds) def _generate_container_field(self, field): self.get_data(field) return self[field]
[docs] def get_data(self, fields=None, sample_type="face", no_ghost=False): if isinstance(fields, list) and len(fields) > 1: for field in fields: self.get_data(field) return elif isinstance(fields, list): fields = fields[0] # Now we have a "fields" value that is either a string or None if fields is not None: mylog.info("Extracting (sampling: %s)", fields) verts = [] samples = [] for _io_chunk in parallel_objects(self.data_source.chunks([], "io")): for block, mask in self.data_source.blocks: my_verts = self._extract_isocontours_from_grid( block, self.surface_field, self.field_value, mask, fields, sample_type, no_ghost=no_ghost, ) if fields is not None: my_verts, svals = my_verts samples.append(svals) verts.append(my_verts) verts = np.concatenate(verts).transpose() verts = self.comm.par_combine_object(verts, op="cat", datatype="array") # verts is an ndarray here and will always be in code units, so we # expose it in the public API as a YTArray self._vertices = self.ds.arr(verts, "code_length") if fields is not None: samples = uconcatenate(samples) samples = self.comm.par_combine_object(samples, op="cat", datatype="array") if sample_type == "face": self[fields] = samples elif sample_type == "vertex": self.vertex_samples[fields] = samples
def _extract_isocontours_from_grid( self, grid, field, value, mask, sample_values=None, sample_type="face", no_ghost=False, ): # TODO: check if multiple fields can be passed here vals = grid.get_vertex_centered_data([field], no_ghost=no_ghost)[field] if sample_values is not None: # TODO: is no_ghost=False correct here? svals = grid.get_vertex_centered_data([sample_values])[sample_values] else: svals = None sample_type = {"face": 1, "vertex": 2}[sample_type] my_verts = march_cubes_grid( value, vals, mask, grid.LeftEdge, grid.dds, svals, sample_type ) return my_verts
[docs] def calculate_flux(self, field_x, field_y, field_z, fluxing_field=None): r"""This calculates the flux over the surface. This function will conduct `Marching Cubes`_ on all the cells in a given data container (grid-by-grid), and then for each identified triangular segment of an isocontour in a given cell, calculate the gradient (i.e., normal) in the isocontoured field, interpolate the local value of the "fluxing" field, the area of the triangle, and then return: area * local_flux_value * (n dot v) Where area, local_value, and the vector v are interpolated at the barycenter (weighted by the vertex values) of the triangle. Note that this specifically allows for the field fluxing across the surface to be *different* from the field being contoured. If the fluxing_field is not specified, it is assumed to be 1.0 everywhere, and the raw flux with no local-weighting is returned. Additionally, the returned flux is defined as flux *into* the surface, not flux *out of* the surface. Parameters ---------- field_x : string The x-component field field_y : string The y-component field field_z : string The z-component field fluxing_field : string, optional The field whose passage over the surface is of interest. If not specified, assumed to be 1.0 everywhere. Returns ------- flux : YTQuantity The summed flux. References ---------- .. _Marching Cubes: https://en.wikipedia.org/wiki/Marching_cubes Examples -------- This will create a data object, find a nice value in the center, and calculate the metal flux over it. >>> sp = ds.sphere("max", (10, "kpc")) >>> surf = ds.surface(sp, ("gas", "density"), 5e-27) >>> flux = surf.calculate_flux( ... ("gas", "velocity_x"), ... ("gas", "velocity_y"), ... ("gas", "velocity_z"), ... ("gas", "metal_density"), ... ) """ flux = 0.0 mylog.info("Fluxing %s", fluxing_field) for _io_chunk in parallel_objects(self.data_source.chunks([], "io")): for block, mask in self.data_source.blocks: flux += self._calculate_flux_in_grid( block, mask, field_x, field_y, field_z, fluxing_field ) flux = self.comm.mpi_allreduce(flux, op="sum") return flux
def _calculate_flux_in_grid( self, grid, mask, field_x, field_y, field_z, fluxing_field=None ): vc_fields = [self.surface_field, field_x, field_y, field_z] if fluxing_field is not None: vc_fields.append(fluxing_field) vc_data = grid.get_vertex_centered_data(vc_fields) if fluxing_field is None: ff = self.ds.arr( np.ones_like(vc_data[self.surface_field].d, dtype="float64"), "dimensionless", ) else: ff = vc_data[fluxing_field] surf_vals = vc_data[self.surface_field] field_x_vals = vc_data[field_x] field_y_vals = vc_data[field_y] field_z_vals = vc_data[field_z] ret = march_cubes_grid_flux( self.field_value, surf_vals, field_x_vals, field_y_vals, field_z_vals, ff, mask, grid.LeftEdge, grid.dds, ) # assumes all the fluxing fields have the same units ret_units = field_x_vals.units * ff.units * grid.dds.units**2 ret = self.ds.arr(ret, ret_units) ret.convert_to_units(self.ds.unit_system[ret_units.dimensions]) return ret _vertices = None @property def vertices(self): if self._vertices is None: self.get_data() return self._vertices @property def triangles(self): vv = np.empty((self.vertices.shape[1] // 3, 3, 3), dtype="float64") vv = self.ds.arr(vv, self.vertices.units) for i in range(3): for j in range(3): vv[:, i, j] = self.vertices[j, i::3] return vv _surface_area = None @property def surface_area(self): if self._surface_area is not None: return self._surface_area tris = self.triangles x = tris[:, 1, :] - tris[:, 0, :] y = tris[:, 2, :] - tris[:, 0, :] areas = (x[:, 1] * y[:, 2] - x[:, 2] * y[:, 1]) ** 2 np.add(areas, (x[:, 2] * y[:, 0] - x[:, 0] * y[:, 2]) ** 2, out=areas) np.add(areas, (x[:, 0] * y[:, 1] - x[:, 1] * y[:, 0]) ** 2, out=areas) np.sqrt(areas, out=areas) self._surface_area = 0.5 * areas.sum() return self._surface_area
[docs] def export_obj( self, filename, transparency=1.0, dist_fac=None, color_field=None, emit_field=None, color_map=None, color_log=True, emit_log=True, plot_index=None, color_field_max=None, color_field_min=None, emit_field_max=None, emit_field_min=None, ): r"""Export the surface to the OBJ format Suitable for visualization in many different programs (e.g., Blender). NOTE: this exports an .obj file and an .mtl file, both with the general 'filename' as a prefix. The .obj file points to the .mtl file in its header, so if you move the 2 files, make sure you change the .obj header to account for this. ALSO NOTE: the emit_field needs to be a combination of the other 2 fields used to have the emissivity track with the color. Parameters ---------- filename : string The file this will be exported to. This cannot be a file-like object. If there are no file extensions included - both obj & mtl files are created. transparency : float This gives the transparency of the output surface plot. Values from 0.0 (invisible) to 1.0 (opaque). dist_fac : float Divide the axes distances by this amount. color_field : string Should a field be sample and colormapped? emit_field : string Should we track the emissivity of a field? This should be a combination of the other 2 fields being used. color_map : string Which color map should be applied? color_log : bool Should the color field be logged before being mapped? emit_log : bool Should the emitting field be logged before being mapped? plot_index : integer Index of plot for multiple plots. If none, then only 1 plot. color_field_max : float Maximum value of the color field across all surfaces. color_field_min : float Minimum value of the color field across all surfaces. emit_field_max : float Maximum value of the emitting field across all surfaces. emit_field_min : float Minimum value of the emitting field across all surfaces. Examples -------- >>> sp = ds.sphere("max", (10, "kpc")) >>> trans = 1.0 >>> surf = ds.surface(sp, ("gas", "density"), 5e-27) >>> surf.export_obj("my_galaxy", transparency=trans) >>> sp = ds.sphere("max", (10, "kpc")) >>> mi, ma = sp.quantities.extrema("temperature") >>> rhos = [1e-24, 1e-25] >>> trans = [0.5, 1.0] >>> for i, r in enumerate(rhos): ... surf = ds.surface(sp, "density", r) ... surf.export_obj( ... "my_galaxy", ... transparency=trans[i], ... color_field="temperature", ... plot_index=i, ... color_field_max=ma, ... color_field_min=mi, ... ) >>> sp = ds.sphere("max", (10, "kpc")) >>> rhos = [1e-24, 1e-25] >>> trans = [0.5, 1.0] >>> def _Emissivity(field, data): ... return ( ... data["gas", "density"] ... * data["gas", "density"] ... * np.sqrt(data["gas", "temperature"]) ... ) >>> ds.add_field( ... ("gas", "emissivity"), ... function=_Emissivity, ... sampling_type="cell", ... units=r"g**2*sqrt(K)/cm**6", ... ) >>> for i, r in enumerate(rhos): ... surf = ds.surface(sp, "density", r) ... surf.export_obj( ... "my_galaxy", ... transparency=trans[i], ... color_field="temperature", ... emit_field="emissivity", ... plot_index=i, ... ) """ if color_map is None: color_map = ytcfg.get("yt", "default_colormap") if self.vertices is None: if color_field is not None: self.get_data(color_field, "face") elif color_field is not None: if color_field not in self.field_data: self[color_field] if color_field is None: self.get_data(self.surface_field, "face") if emit_field is not None: if color_field not in self.field_data: self[emit_field] only_on_root( self._export_obj, filename, transparency, dist_fac, color_field, emit_field, color_map, color_log, emit_log, plot_index, color_field_max, color_field_min, emit_field_max, emit_field_min, )
def _color_samples_obj( self, cs, em, color_log, emit_log, color_map, arr, color_field_max, color_field_min, color_field, emit_field_max, emit_field_min, emit_field, ): # this now holds for obj files if color_field is not None: if color_log: cs = np.log10(cs) if emit_field is not None: if emit_log: em = np.log10(em) if color_field is not None: if color_field_min is None: cs = [float(field) for field in cs] cs = np.array(cs) mi = cs.min() else: mi = color_field_min if color_log: mi = np.log10(mi) if color_field_max is None: cs = [float(field) for field in cs] cs = np.array(cs) ma = cs.max() else: ma = color_field_max if color_log: ma = np.log10(ma) cs = (cs - mi) / (ma - mi) else: cs[:] = 1.0 # to get color indices for OBJ formatting lut = get_colormap_lut(color_map) x = np.mgrid[0.0 : 1.0 : lut[0].shape[0] * 1j] arr["cind"][:] = (np.interp(cs, x, x) * (lut[0].shape[0] - 1)).astype("uint8") # now, get emission if emit_field is not None: if emit_field_min is None: em = [float(field) for field in em] em = np.array(em) emi = em.min() else: emi = emit_field_min if emit_log: emi = np.log10(emi) if emit_field_max is None: em = [float(field) for field in em] em = np.array(em) ema = em.max() else: ema = emit_field_max if emit_log: ema = np.log10(ema) em = (em - emi) / (ema - emi) x = np.mgrid[0.0:255.0:2j] # assume 1 emissivity per color arr["emit"][:] = ( np.interp(em, x, x) ) * 2.0 # for some reason, max emiss = 2 else: arr["emit"][:] = 0.0 @parallel_root_only def _export_obj( self, filename, transparency, dist_fac=None, color_field=None, emit_field=None, color_map=None, color_log=True, emit_log=True, plot_index=None, color_field_max=None, color_field_min=None, emit_field_max=None, emit_field_min=None, ): if color_map is None: color_map = ytcfg.get("yt", "default_colormap") if plot_index is None: plot_index = 0 if isinstance(filename, io.IOBase): fobj = filename + ".obj" fmtl = filename + ".mtl" else: if plot_index == 0: fobj = open(filename + ".obj", "w") fmtl = open(filename + ".mtl", "w") cc = 1 else: # read in last vertex linesave = "" for line in fileinput.input(filename + ".obj"): if line[0] == "f": linesave = line p = [m.start() for m in finditer(" ", linesave)] cc = int(linesave[p[len(p) - 1] :]) + 1 fobj = open(filename + ".obj", "a") fmtl = open(filename + ".mtl", "a") ftype = [("cind", "uint8"), ("emit", "float")] vtype = [("x", "float"), ("y", "float"), ("z", "float")] if plot_index == 0: fobj.write("# yt OBJ file\n") fobj.write("# www.yt-project.org\n") fobj.write( f"mtllib {filename}.mtl\n\n" ) # use this material file for the faces fmtl.write("# yt MLT file\n") fmtl.write("# www.yt-project.org\n\n") # (0) formulate vertices nv = self.vertices.shape[1] # number of groups of vertices f = np.empty( nv // self.vertices.shape[0], dtype=ftype ) # store sets of face colors v = np.empty(nv, dtype=vtype) # stores vertices if color_field is not None: cs = self[color_field] else: cs = np.empty(self.vertices.shape[1] // self.vertices.shape[0]) if emit_field is not None: em = self[emit_field] else: em = np.empty(self.vertices.shape[1] // self.vertices.shape[0]) self._color_samples_obj( cs, em, color_log, emit_log, color_map, f, color_field_max, color_field_min, color_field, emit_field_max, emit_field_min, emit_field, ) # map color values to color scheme lut = get_colormap_lut(color_map) # interpolate emissivity to enumerated colors emiss = np.interp( np.mgrid[0 : lut[0].shape[0]], np.mgrid[0 : len(cs)], f["emit"][:] ) if dist_fac is None: # then normalize by bounds DLE = self.pf.domain_left_edge DRE = self.pf.domain_right_edge bounds = [(DLE[i], DRE[i]) for i in range(3)] for i, ax in enumerate("xyz"): # Do the bounds first since we cast to f32 tmp = self.vertices[i, :] np.subtract(tmp, bounds[i][0], tmp) w = bounds[i][1] - bounds[i][0] np.divide(tmp, w, tmp) np.subtract(tmp, 0.5, tmp) # Center at origin. v[ax][:] = tmp else: for i, ax in enumerate("xyz"): tmp = self.vertices[i, :] np.divide(tmp, dist_fac, tmp) v[ax][:] = tmp # (1) write all colors per surface to mtl file for i in range(0, lut[0].shape[0]): omname = f"material_{i}_{plot_index}" # name of the material fmtl.write( f"newmtl {omname}\n" ) # the specific material (color) for this face fmtl.write(f"Ka {0.0:.6f} {0.0:.6f} {0.0:.6f}\n") # ambient color, keep off fmtl.write( f"Kd {lut[0][i]:.6f} {lut[1][i]:.6f} {lut[2][i]:.6f}\n" ) # color of face fmtl.write( f"Ks {0.0:.6f} {0.0:.6f} {0.0:.6f}\n" ) # specular color, keep off fmtl.write(f"d {transparency:.6f}\n") # transparency fmtl.write(f"em {emiss[i]:.6f}\n") # emissivity per color fmtl.write("illum 2\n") # not relevant, 2 means highlights on? fmtl.write(f"Ns {0:.6f}\n\n") # keep off, some other specular thing # (2) write vertices for i in range(0, self.vertices.shape[1]): fobj.write(f"v {v['x'][i]:.6f} {v['y'][i]:.6f} {v['z'][i]:.6f}\n") fobj.write("#done defining vertices\n\n") # (3) define faces and materials for each face for i in range(0, self.triangles.shape[0]): omname = f"material_{f['cind'][i]}_{plot_index}" # which color to use fobj.write( f"usemtl {omname}\n" ) # which material to use for this face (color) fobj.write(f"f {cc} {cc+1} {cc+2}\n\n") # vertices to color cc = cc + 3 fmtl.close() fobj.close()
[docs] def export_blender( self, transparency=1.0, dist_fac=None, color_field=None, emit_field=None, color_map=None, color_log=True, emit_log=True, plot_index=None, color_field_max=None, color_field_min=None, emit_field_max=None, emit_field_min=None, ): r"""This exports the surface to the OBJ format, suitable for visualization in many different programs (e.g., Blender). NOTE: this exports an .obj file and an .mtl file, both with the general 'filename' as a prefix. The .obj file points to the .mtl file in its header, so if you move the 2 files, make sure you change the .obj header to account for this. ALSO NOTE: the emit_field needs to be a combination of the other 2 fields used to have the emissivity track with the color. Parameters ---------- transparency : float This gives the transparency of the output surface plot. Values from 0.0 (invisible) to 1.0 (opaque). dist_fac : float Divide the axes distances by this amount. color_field : string Should a field be sample and colormapped? emit_field : string Should we track the emissivity of a field? NOTE: this should be a combination of the other 2 fields being used. color_map : string Which color map should be applied? color_log : bool Should the color field be logged before being mapped? emit_log : bool Should the emitting field be logged before being mapped? plot_index : integer Index of plot for multiple plots. If none, then only 1 plot. color_field_max : float Maximum value of the color field across all surfaces. color_field_min : float Minimum value of the color field across all surfaces. emit_field_max : float Maximum value of the emitting field across all surfaces. emit_field_min : float Minimum value of the emitting field across all surfaces. Examples -------- >>> sp = ds.sphere("max", (10, "kpc")) >>> trans = 1.0 >>> surf = ds.surface(sp, ("gas", "density"), 5e-27) >>> surf.export_obj("my_galaxy", transparency=trans) >>> sp = ds.sphere("max", (10, "kpc")) >>> mi, ma = sp.quantities.extrema("temperature")[0] >>> rhos = [1e-24, 1e-25] >>> trans = [0.5, 1.0] >>> for i, r in enumerate(rhos): ... surf = ds.surface(sp, "density", r) ... surf.export_obj( ... "my_galaxy", ... transparency=trans[i], ... color_field="temperature", ... plot_index=i, ... color_field_max=ma, ... color_field_min=mi, ... ) >>> sp = ds.sphere("max", (10, "kpc")) >>> rhos = [1e-24, 1e-25] >>> trans = [0.5, 1.0] >>> def _Emissivity(field, data): ... return ( ... data["gas", "density"] ... * data["gas", "density"] ... * np.sqrt(data["gas", "temperature"]) ... ) >>> ds.add_field(("gas", "emissivity"), function=_Emissivity, units="g / cm**6") >>> for i, r in enumerate(rhos): ... surf = ds.surface(sp, "density", r) ... surf.export_obj( ... "my_galaxy", ... transparency=trans[i], ... color_field="temperature", ... emit_field="emissivity", ... plot_index=i, ... ) """ if color_map is None: color_map = ytcfg.get("yt", "default_colormap") if self.vertices is None: if color_field is not None: self.get_data(color_field, "face") elif color_field is not None: if color_field not in self.field_data: self[color_field] if color_field is None: self.get_data(self.surface_field, "face") if emit_field is not None: if color_field not in self.field_data: self[emit_field] fullverts, colors, alpha, emisses, colorindex = only_on_root( self._export_blender, transparency, dist_fac, color_field, emit_field, color_map, color_log, emit_log, plot_index, color_field_max, color_field_min, emit_field_max, emit_field_min, ) return fullverts, colors, alpha, emisses, colorindex
def _export_blender( self, transparency, dist_fac=None, color_field=None, emit_field=None, color_map=None, color_log=True, emit_log=True, plot_index=None, color_field_max=None, color_field_min=None, emit_field_max=None, emit_field_min=None, ): if color_map is None: color_map = ytcfg.get("yt", "default_colormap") if plot_index is None: plot_index = 0 ftype = [("cind", "uint8"), ("emit", "float")] vtype = [("x", "float"), ("y", "float"), ("z", "float")] # (0) formulate vertices nv = self.vertices.shape[1] # number of groups of vertices f = np.empty( nv / self.vertices.shape[0], dtype=ftype ) # store sets of face colors v = np.empty(nv, dtype=vtype) # stores vertices if color_field is not None: cs = self[color_field] else: cs = np.empty(self.vertices.shape[1] / self.vertices.shape[0]) if emit_field is not None: em = self[emit_field] else: em = np.empty(self.vertices.shape[1] / self.vertices.shape[0]) self._color_samples_obj( cs, em, color_log, emit_log, color_map, f, color_field_max, color_field_min, color_field, emit_field_max, emit_field_min, emit_field, ) # map color values to color scheme lut = get_colormap_lut(color_map) # interpolate emissivity to enumerated colors emiss = np.interp( np.mgrid[0 : lut[0].shape[0]], np.mgrid[0 : len(cs)], f["emit"][:] ) if dist_fac is None: # then normalize by bounds DLE = self.ds.domain_left_edge DRE = self.ds.domain_right_edge bounds = [(DLE[i], DRE[i]) for i in range(3)] for i, ax in enumerate("xyz"): # Do the bounds first since we cast to f32 tmp = self.vertices[i, :] np.subtract(tmp, bounds[i][0], tmp) w = bounds[i][1] - bounds[i][0] np.divide(tmp, w, tmp) np.subtract(tmp, 0.5, tmp) # Center at origin. v[ax][:] = tmp else: for i, ax in enumerate("xyz"): tmp = self.vertices[i, :] np.divide(tmp, dist_fac, tmp) v[ax][:] = tmp return v, lut, transparency, emiss, f["cind"]
[docs] def export_ply( self, filename, bounds=None, color_field=None, color_map=None, color_log=True, sample_type="face", no_ghost=False, *, color_field_max=None, color_field_min=None, ): r"""This exports the surface to the PLY format, suitable for visualization in many different programs (e.g., MeshLab). Parameters ---------- filename : string The file this will be exported to. This cannot be a file-like object. bounds : list of tuples The bounds the vertices will be normalized to. This is of the format: [(xmin, xmax), (ymin, ymax), (zmin, zmax)]. Defaults to the full domain. color_field : string Should a field be sample and colormapped? color_map : string Which color map should be applied? color_log : bool Should the color field be logged before being mapped? color_field_max : float Maximum value of the color field across all surfaces. color_field_min : float Minimum value of the color field across all surfaces. Examples -------- >>> from yt.units import kpc >>> sp = ds.sphere("max", (10, "kpc")) >>> surf = ds.surface(sp, ("gas", "density"), 5e-27) >>> print(surf["gas", "temperature"]) >>> print(surf.vertices) >>> bounds = [ ... (sp.center[i] - 5.0 * kpc, sp.center[i] + 5.0 * kpc) for i in range(3) ... ] >>> surf.export_ply("my_galaxy.ply", bounds=bounds) """ if color_map is None: color_map = ytcfg.get("yt", "default_colormap") if self.vertices is None: self.get_data(color_field, sample_type, no_ghost=no_ghost) elif color_field is not None: if sample_type == "face" and color_field not in self.field_data: self[color_field] elif sample_type == "vertex" and color_field not in self.vertex_samples: self.get_data(color_field, sample_type, no_ghost=no_ghost) self._export_ply( filename, bounds, color_field, color_map, color_log, sample_type, color_field_max=color_field_max, color_field_min=color_field_min, )
def _color_samples( self, cs, color_log, color_map, arr, *, color_field_max=None, color_field_min=None, ): cs = np.asarray(cs) if color_log: cs = np.log10(cs) if color_field_min is None: mi = cs.min() else: mi = color_field_min if color_log: mi = np.log10(mi) if color_field_max is None: ma = cs.max() else: ma = color_field_max if color_log: ma = np.log10(ma) cs = (cs - mi) / (ma - mi) from yt.visualization.image_writer import map_to_colors cs = map_to_colors(cs, color_map) arr["red"][:] = cs[0, :, 0] arr["green"][:] = cs[0, :, 1] arr["blue"][:] = cs[0, :, 2] @parallel_root_only def _export_ply( self, filename, bounds=None, color_field=None, color_map=None, color_log=True, sample_type="face", *, color_field_max=None, color_field_min=None, ): if color_map is None: color_map = ytcfg.get("yt", "default_colormap") if hasattr(filename, "read"): f = filename else: f = open(filename, "wb") if bounds is None: DLE = self.ds.domain_left_edge DRE = self.ds.domain_right_edge bounds = [(DLE[i], DRE[i]) for i in range(3)] elif any(not all(isinstance(be, YTArray) for be in b) for b in bounds): bounds = [ tuple( be if isinstance(be, YTArray) else self.ds.quan(be, "code_length") for be in b ) for b in bounds ] nv = self.vertices.shape[1] vs = [ ("x", "<f"), ("y", "<f"), ("z", "<f"), ("red", "uint8"), ("green", "uint8"), ("blue", "uint8"), ] fs = [ ("ni", "uint8"), ("v1", "<i4"), ("v2", "<i4"), ("v3", "<i4"), ("red", "uint8"), ("green", "uint8"), ("blue", "uint8"), ] f.write(b"ply\n") f.write(b"format binary_little_endian 1.0\n") line = "element vertex %i\n" % (nv) f.write(line.encode("latin-1")) f.write(b"property float x\n") f.write(b"property float y\n") f.write(b"property float z\n") if color_field is not None and sample_type == "vertex": f.write(b"property uchar red\n") f.write(b"property uchar green\n") f.write(b"property uchar blue\n") v = np.empty(self.vertices.shape[1], dtype=vs) cs = self.vertex_samples[color_field] self._color_samples( cs, color_log, color_map, v, color_field_max=color_field_max, color_field_min=color_field_min, ) else: v = np.empty(self.vertices.shape[1], dtype=vs[:3]) line = "element face %i\n" % (nv / 3) f.write(line.encode("latin-1")) f.write(b"property list uchar int vertex_indices\n") if color_field is not None and sample_type == "face": f.write(b"property uchar red\n") f.write(b"property uchar green\n") f.write(b"property uchar blue\n") # Now we get our samples cs = self[color_field] arr = np.empty(cs.shape[0], dtype=np.dtype(fs)) self._color_samples( cs, color_log, color_map, arr, color_field_max=color_field_max, color_field_min=color_field_min, ) else: arr = np.empty(nv // 3, np.dtype(fs[:-3])) for i, ax in enumerate("xyz"): # Do the bounds first since we cast to f32 tmp = self.vertices[i, :] np.subtract(tmp, bounds[i][0], tmp) w = bounds[i][1] - bounds[i][0] np.divide(tmp, w, tmp) np.subtract(tmp, 0.5, tmp) # Center at origin. v[ax][:] = tmp f.write(b"end_header\n") v.tofile(f) arr["ni"][:] = 3 vi = np.arange(nv, dtype="<i") vi.shape = (nv // 3, 3) arr["v1"][:] = vi[:, 0] arr["v2"][:] = vi[:, 1] arr["v3"][:] = vi[:, 2] arr.tofile(f) if filename is not f: f.close()
[docs] def export_sketchfab( self, title, description, api_key=None, color_field=None, color_map=None, color_log=True, bounds=None, no_ghost=False, *, color_field_max=None, color_field_min=None, ): r"""This exports Surfaces to SketchFab.com, where they can be viewed interactively in a web browser. SketchFab.com is a proprietary web service that provides WebGL rendering of models. This routine will use temporary files to construct a compressed binary representation (in .PLY format) of the Surface and any optional fields you specify and upload it to SketchFab.com. It requires an API key, which can be found on your SketchFab.com dashboard. You can either supply the API key to this routine directly or you can place it in the variable "sketchfab_api_key" in your ~/.config/yt/yt.toml file. This function is parallel-safe. Parameters ---------- title : string The title for the model on the website description : string How you want the model to be described on the website api_key : string Optional; defaults to using the one in the config file color_field : string If specified, the field by which the surface will be colored color_map : string The name of the color map to use to map the color field color_log : bool Should the field be logged before being mapped to RGB? bounds : list of tuples [ (xmin, xmax), (ymin, ymax), (zmin, zmax) ] within which the model will be scaled and centered. Defaults to the full domain. color_field_max : float Maximum value of the color field across all surfaces. color_field_min : float Minimum value of the color field across all surfaces. Returns ------- URL : string The URL at which your model can be viewed. Examples -------- >>> from yt.units import kpc >>> dd = ds.sphere("max", (200, "kpc")) >>> rho = 5e-27 >>> bounds = [ ... (dd.center[i] - 100.0 * kpc, dd.center[i] + 100.0 * kpc) ... for i in range(3) ... ] ... >>> surf = ds.surface(dd, ("gas", "density"), rho) >>> rv = surf.export_sketchfab( ... title="Testing Upload", ... description="A simple test of the uploader", ... color_field="temperature", ... color_map="hot", ... color_log=True, ... bounds=bounds, ... ) ... """ if color_map is None: color_map = ytcfg.get("yt", "default_colormap") api_key = api_key or ytcfg.get("yt", "sketchfab_api_key") if api_key in (None, "None"): raise YTNoAPIKey("SketchFab.com", "sketchfab_api_key") ply_file = TemporaryFile() self.export_ply( ply_file, bounds, color_field, color_map, color_log, sample_type="vertex", no_ghost=no_ghost, color_field_max=color_field_max, color_field_min=color_field_min, ) ply_file.seek(0) # Greater than ten million vertices and we throw an error but dump # to a file. if self.vertices.shape[1] > 1e7: tfi = 0 fn = "temp_model_%03i.ply" % tfi while os.path.exists(fn): fn = "temp_model_%03i.ply" % tfi tfi += 1 open(fn, "wb").write(ply_file.read()) raise YTTooManyVertices(self.vertices.shape[1], fn) zfs = NamedTemporaryFile(suffix=".zip") with zipfile.ZipFile(zfs, "w", zipfile.ZIP_DEFLATED) as zf: zf.writestr("yt_export.ply", ply_file.read()) zfs.seek(0) zfs.seek(0) data = { "token": api_key, "name": title, "description": description, "tags": "yt", } files = {"modelFile": zfs} upload_id = self._upload_to_sketchfab(data, files) upload_id = self.comm.mpi_bcast(upload_id, root=0) return upload_id
@parallel_root_only def _upload_to_sketchfab(self, data, files): from yt.utilities.on_demand_imports import _requests as requests SKETCHFAB_DOMAIN = "sketchfab.com" SKETCHFAB_API_URL = f"https://api.{SKETCHFAB_DOMAIN}/v2/models" SKETCHFAB_MODEL_URL = f"https://{SKETCHFAB_DOMAIN}/models/" try: r = requests.post(SKETCHFAB_API_URL, data=data, files=files, verify=False) except requests.exceptions.RequestException: mylog.exception("An error has occurred") return result = r.json() if r.status_code != requests.codes.created: mylog.error("Upload to SketchFab failed with error: %s", result) return model_uid = result["uid"] model_url = SKETCHFAB_MODEL_URL + model_uid if model_uid: mylog.info("Model uploaded to: %s", model_url) else: mylog.error("Problem uploading.") return model_uid
[docs] class YTOctree(YTSelectionContainer3D): """A 3D region with all the data filled into an octree. This container will deposit particle fields onto octs using a kernel and SPH smoothing. The octree is built in a depth-first fashion. Depth-first search (DFS) means that tree starts refining at the root node (this is the largest node which contains every particles) and refines as far as possible along each branch before backtracking. Parameters ---------- right_edge : array_like The right edge of the region to be extracted. Specify units by supplying a YTArray, otherwise code length units are assumed. left_edge : array_like The left edge of the region to be extracted. Specify units by supplying a YTArray, otherwise code length units are assumed. n_ref: int This is the maximum number of particles per leaf in the resulting octree. ptypes: list This is the type of particles to include when building the tree. This will default to all particles. Examples -------- octree = ds.octree(n_ref=64) x_positions_of_cells = octree['index', 'x'] y_positions_of_cells = octree['index', 'y'] z_positions_of_cells = octree['index', 'z'] density_of_gas_in_cells = octree['gas', 'density'] """ _spatial = True _type_name = "octree" _con_args = ("left_edge", "right_edge", "n_ref") _container_fields = ( ("index", "dx"), ("index", "dy"), ("index", "dz"), ("index", "x"), ("index", "y"), ("index", "z"), ("index", "depth"), ("index", "refined"), ("index", "sizes"), ("index", "positions"), ) def __init__( self, left_edge=None, right_edge=None, n_ref=32, ptypes=None, ds=None, field_parameters=None, ): if field_parameters is None: center = None else: center = field_parameters.get("center", None) YTSelectionContainer3D.__init__(self, center, ds, field_parameters) self.left_edge = self._sanitize_edge(left_edge, ds.domain_left_edge) self.right_edge = self._sanitize_edge(right_edge, ds.domain_right_edge) self.n_ref = n_ref self.ptypes = self._sanitize_ptypes(ptypes) self._setup_data_source() self.tree def _generate_tree(self): positions = [] for ptype in self.ptypes: positions.append( self._data_source[ptype, "particle_position"].in_units("code_length").d ) positions = ( np.concatenate(positions) if len(positions) > 0 else np.array(positions) ) if not positions.size: mylog.info("No particles found!") self._octree = None return mylog.info("Allocating Octree for %s particles", positions.shape[0]) self._octree = CyOctree( positions, left_edge=self.left_edge.to("code_length").d, right_edge=self.right_edge.to("code_length").d, n_ref=self.n_ref, ) mylog.info("Allocated %s nodes in octree", self._octree.num_nodes) mylog.info("Octree bound %s particles", self._octree.bound_particles) # Now we store the index data about the octree in the python container ds = self.ds pos = ds.arr(self._octree.node_positions, "code_length") self["index", "positions"] = pos self["index", "x"] = pos[:, 0] self["index", "y"] = pos[:, 1] self["index", "z"] = pos[:, 2] self["index", "refined"] = self._octree.node_refined sizes = ds.arr(self._octree.node_sizes, "code_length") self["index", "sizes"] = sizes self["index", "dx"] = sizes[:, 0] self["index", "dy"] = sizes[:, 1] self["index", "dz"] = sizes[:, 2] self["index", "depth"] = self._octree.node_depth @property def tree(self): """ The Cython+Python octree instance """ if hasattr(self, "_octree"): return self._octree self._generate_tree() return self._octree @property def sph_smoothing_style(self): smoothing_style = getattr(self.ds, "sph_smoothing_style", "scatter") return smoothing_style @property def sph_normalize(self): normalize = getattr(self.ds, "use_sph_normalization", "normalize") return normalize @property def sph_num_neighbors(self): num_neighbors = getattr(self.ds, "num_neighbors", 32) return num_neighbors def _sanitize_ptypes(self, ptypes): if ptypes is None: return ["all"] if not isinstance(ptypes, list): ptypes = [ptypes] for ptype in ptypes: if ptype not in self.ds.particle_types: mess = f"{ptype} not found. Particle type must " mess += "be in the dataset!" raise TypeError(mess) return ptypes def _setup_data_source(self): mylog.info( ( "Allocating octree with spatial range " "[%.4e, %.4e, %.4e] code_length to " "[%.4e, %.4e, %.4e] code_length" ), *self.left_edge.to("code_length").d, *self.right_edge.to("code_length").d, ) self._data_source = self.ds.region(self.center, self.left_edge, self.right_edge) def _sanitize_edge(self, edge, default): if edge is None: return default.copy() if not is_sequence(edge): edge = [edge] * len(self.ds.domain_left_edge) if len(edge) != len(self.ds.domain_left_edge): raise RuntimeError( "Length of edges must match the dimensionality of the dataset" ) if hasattr(edge, "units"): if edge.units.registry is self.ds.unit_registry: return edge edge_units = edge.units else: edge_units = "code_length" return self.ds.arr(edge, edge_units)
[docs] def get_data(self, fields=None): if fields is None: return if hasattr(self.ds, "_sph_ptypes"): sph_ptypes = self.ds._sph_ptypes else: sph_ptypes = tuple( value for value in self.ds.particle_types_raw if value in ["PartType0", "Gas", "gas", "io"] ) if len(sph_ptypes) == 0: raise RuntimeError smoothing_style = self.sph_smoothing_style normalize = self.sph_normalize if fields[0] in sph_ptypes: units = self.ds._get_field_info(fields).units if smoothing_style == "scatter": self._scatter_smooth(fields, units, normalize) else: self._gather_smooth(fields, units, normalize) elif fields[0] == "index": return self[fields] else: raise NotImplementedError
def _gather_smooth(self, fields, units, normalize): buff = np.zeros(self.tree.num_nodes, dtype="float64") # Again, attempt to load num_neighbors from the octree num_neighbors = self.sph_num_neighbors # For the gather approach we load up all of the data, this like other # gather approaches is not memory conservative but with spatial chunking # this can be fixed fields_to_get = [ "particle_position", "density", "particle_mass", "smoothing_length", fields[1], ] all_fields = all_data(self.ds, fields[0], fields_to_get, kdtree=True) interpolate_sph_positions_gather( buff, all_fields["particle_position"], self["index", "positions"], all_fields["smoothing_length"], all_fields["particle_mass"], all_fields["density"], all_fields[fields[1]].in_units(units), self.ds.index.kdtree, use_normalization=normalize, num_neigh=num_neighbors, ) self[fields] = self.ds.arr(buff[~self["index", "refined"]], units) def _scatter_smooth(self, fields, units, normalize): from tqdm import tqdm buff = np.zeros(self.tree.num_nodes, dtype="float64") if normalize: buff_den = np.zeros(buff.shape[0], dtype="float64") else: buff_den = np.empty(0) ptype = fields[0] pbar = tqdm(desc=f"Interpolating (scatter) SPH field {fields[0]}") for chunk in self._data_source.chunks([fields], "io"): px = chunk[ptype, "particle_position_x"].to("code_length").d py = chunk[ptype, "particle_position_y"].to("code_length").d pz = chunk[ptype, "particle_position_z"].to("code_length").d hsml = chunk[ptype, "smoothing_length"].to("code_length").d pmass = chunk[ptype, "particle_mass"].to("code_mass").d pdens = chunk[ptype, "density"].to("code_mass/code_length**3").d field_quantity = chunk[fields].to(units).d if px.shape[0] > 0: self.tree.interpolate_sph_cells( buff, buff_den, px, py, pz, pmass, pdens, hsml, field_quantity, use_normalization=normalize, ) pbar.update(1) pbar.close() if normalize: normalization_1d_utility(buff, buff_den) self[fields] = self.ds.arr(buff[~self["index", "refined"]], units)