Analysis Modules

Learn yt workshop 2016
Nathan Goldbaum

(some slides from Britton Smith’s 2012 clump finding tutorial)
Outline

• Clump finding
• Halo finding
 • rockstar
• Synthetic Observations
 • Trident, pyXSIM
Clump Finding

“clump”:

The largest disconnected isocontour satisfying some criteria, such as being gravitationally bound.
Finding Clumps

Max

Density

Min
Finding Clumps

Max

Min
Finding Clumps
Finding Clumps

Max

Bound?
Finding Clumps

Max

Bound?

NO
Finding Clumps
Finding Clumps

Max

Single Child
Finding Clumps
Finding Clumps

Max

Bound? YES
Finding Clumps
Finding Clumps

Max

Bound?
Finding Clumps

Max

Bound?
NO
Finding Clumps

Max

Bound?
Finding Clumps

Max

Bound? NO
Finding Clumps

Bound?
Finding Clumps

Max

Bound? YES
Finding Clumps
Finding Clumps
Finding Clumps

Max

Min
Finding Clumps

Max

Single Child
Finding Clumps

Max

Single Child
Finding Clumps

Max

Bound?
Finding Clumps

Bound? YES
Finding Clumps
Using the clump finder

- Create “master” clump
- Add validators
 - Gravitationally bound?
- Find clumps
- Analyze, write to disk, and plot

$ yt pastebin_grab 6867 > find_clumps.py
Halo finding and analysis

- Halo Finders
- FOF, Hop, Rockstar
- Halo analysis
- Halo catalog
- Saving and reloading
Halo Finders

Identify particle clusters based on linking length (FOF)

Calculate R_vir, mass, position

HOP, Rockstar, similar but add refinements like smoothing and taking into account velocity information
Halo Finders

Identify particle clusters based on linking length (FOF)

Calculate R_{vir}, mass, position

HOP, Rockstar, similar but add refinements like smoothing and taking into account velocity information
Halo Finders

Identify particle clusters based on linking length (FOF)

Calculate R_{vir}, mass, position

HOP, Rockstar, similar but add refinements like smoothing and taking into account velocity information
Installing Rockstar

- Install script: easiest method

- Build Matt’s fork of rockstar: http://bitbucket.org/MatthewTurk/rockstar

- Build yt from source, pointing it at the rockstar build directory by adding a rockstar.cfg file

- Seems to be an issue on MacOS Sierra?
Running Rockstar

import yt
yt.enable_parallelism()
from yt.analysis_modules.halo_finding.rockstar.api import RockstarHaloFinder

create a particle filter to remove star particles
@yt.particle_filter("dark_matter", requires=["creation_time"])
def _dm_filter(pfilter, data):
 return data["creation_time"] <= 0.0

def setup_ds(ds):
 ds.add_particle_filter("dark_matter")

es = yt.simulation("enzo_cosmology_plus/AMRCosmology.enzo", "Enzo")
es.get_time_series(setup_function=setup_ds, redshift_data=False)
rh = RockstarHaloFinder(es, num_readers=1, num_writers=2,
 particle_type="dark_matter")
rh.run()

Needs at least 3 MPI tasks
Halo analysis example

http://yt-project.org/docs/dev/cookbook/halo_analysis_example.html

Let’s modify this example in the yt docs to use this dataset we’ve been working with
Trident

http://trident-project.org
pyXSIM

Simulating xray observations