yt.frontends.stream.fields module

Fields specific to Streaming data

class yt.frontends.stream.fields.StreamFieldInfo(ds, field_list, slice_info=None)[source]

Bases: yt.fields.field_info_container.FieldInfoContainer

add_field(name, sampling_type, function=None, **kwargs)

Add a new field, along with supplemental metadata, to the list of available fields. This respects a number of arguments, all of which are passed on to the constructor for DerivedField.

Parameters:
  • name (str) – is the name of the field.
  • function (callable) – A function handle that defines the field. Should accept arguments (field, data)
  • units (str) – A plain text string encoding the unit. Powers must be in python syntax (** instead of ^). If set to “auto” the units will be inferred from the return value of the field function.
  • take_log (bool) – Describes whether the field should be logged
  • validators (list) – A list of FieldValidator objects
  • particle_type (bool) – Is this a particle (1D) field?
  • vector_field (bool) – Describes the dimensionality of the field. Currently unused.
  • display_name (str) – A name used in the plots
add_output_field(name, sampling_type, **kwargs)[source]
alias(alias_name, original_name, units=None)
check_derived_fields(fields_to_check=None)
clear() → None. Remove all items from D.
copy() → a shallow copy of D
create_with_fallback(fallback, name='')
extra_union_fields = ()
fallback = None
find_dependencies(loaded)
fromkeys()

Returns a new dict with keys from iterable and values equal to value.

get(k[, d]) → D[k] if k in D, else d. d defaults to None.
has_key(key)
items() → a set-like object providing a view on D's items
keys()
known_other_fields = (('density', ('code_mass/code_length**3', ['density'], None)), ('dark_matter_density', ('code_mass/code_length**3', ['dark_matter_density'], None)), ('number_density', ('1/code_length**3', ['number_density'], None)), ('pressure', ('dyne/code_length**2', ['pressure'], None)), ('thermal_energy', ('erg / g', ['thermal_energy'], None)), ('temperature', ('K', ['temperature'], None)), ('velocity_x', ('code_length/code_time', ['velocity_x'], None)), ('velocity_y', ('code_length/code_time', ['velocity_y'], None)), ('velocity_z', ('code_length/code_time', ['velocity_z'], None)), ('magnetic_field_x', ('gauss', [], None)), ('magnetic_field_y', ('gauss', [], None)), ('magnetic_field_z', ('gauss', [], None)), ('radiation_acceleration_x', ('code_length/code_time**2', ['radiation_acceleration_x'], None)), ('radiation_acceleration_y', ('code_length/code_time**2', ['radiation_acceleration_y'], None)), ('radiation_acceleration_z', ('code_length/code_time**2', ['radiation_acceleration_z'], None)), ('metallicity', ('Zsun', ['metallicity'], None)), ('metal_density', ('code_mass/code_length**3', ['metal_density'], None)), ('hi_density', ('code_mass/code_length**3', ['hi_density'], None)), ('hii_density', ('code_mass/code_length**3', ['hii_density'], None)), ('h2i_density', ('code_mass/code_length**3', ['h2i_density'], None)), ('h2ii_density', ('code_mass/code_length**3', ['h2ii_density'], None)), ('h2m_density', ('code_mass/code_length**3', ['h2m_density'], None)), ('hei_density', ('code_mass/code_length**3', ['hei_density'], None)), ('heii_density', ('code_mass/code_length**3', ['heii_density'], None)), ('heiii_density', ('code_mass/code_length**3', ['heiii_density'], None)), ('hdi_density', ('code_mass/code_length**3', ['hdi_density'], None)), ('di_density', ('code_mass/code_length**3', ['di_density'], None)), ('dii_density', ('code_mass/code_length**3', ['dii_density'], None)))
known_particle_fields = (('particle_position', ('code_length', ['particle_position'], None)), ('particle_position_x', ('code_length', ['particle_position_x'], None)), ('particle_position_y', ('code_length', ['particle_position_y'], None)), ('particle_position_z', ('code_length', ['particle_position_z'], None)), ('particle_velocity', ('code_length/code_time', ['particle_velocity'], None)), ('particle_velocity_x', ('code_length/code_time', ['particle_velocity_x'], None)), ('particle_velocity_y', ('code_length/code_time', ['particle_velocity_y'], None)), ('particle_velocity_z', ('code_length/code_time', ['particle_velocity_z'], None)), ('particle_index', ('', ['particle_index'], None)), ('particle_gas_density', ('code_mass/code_length**3', ['particle_gas_density'], None)), ('particle_gas_temperature', ('K', ['particle_gas_temperature'], None)), ('particle_mass', ('code_mass', ['particle_mass'], None)), ('smoothing_length', ('code_length', ['smoothing_length'], None)), ('density', ('code_mass/code_length**3', ['density'], None)), ('temperature', ('code_temperature', ['temperature'], None)), ('creation_time', ('code_time', ['creation_time'], None)))
load_all_plugins(ftype='gas')
load_plugin(plugin_name, ftype='gas', skip_check=False)
pop(k[, d]) → v, remove specified key and return the corresponding value.

If key is not found, d is returned if given, otherwise KeyError is raised

popitem() → (k, v), remove and return some (key, value) pair as a

2-tuple; but raise KeyError if D is empty.

setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D
setup_extra_union_fields(ptype='all')
setup_fluid_aliases()
setup_fluid_fields()[source]
setup_fluid_index_fields()
setup_particle_fields(ptype, ftype='gas', num_neighbors=64)
setup_smoothed_fields(ptype, num_neighbors=64, ftype='gas')
update([E, ]**F) → None. Update D from dict/iterable E and F.

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values() → an object providing a view on D's values