Using yt to view and analyze Gadget outputsΒΆ


Loading the data

First we set up our imports:

In [1]:
import yt
import numpy as np
import yt.units as units
import pylab

First we load the data set, specifying both the unit length/mass/velocity, as well as the size of the bounding box (which should encapsulate all the particles in the data set)

At the end, we flatten the data into "ad" in case we want access to the raw simulation data

This dataset is available for download at (430 MB).

In [2]:
fname = 'GadgetDiskGalaxy/snapshot_200.hdf5'

unit_base = {'UnitLength_in_cm'         : 3.08568e+21,
             'UnitMass_in_g'            :   1.989e+43,
             'UnitVelocity_in_cm_per_s' :      100000}

bbox_lim = 1e5 #kpc

bbox = [[-bbox_lim,bbox_lim],
ds = yt.load(fname,unit_base=unit_base,bounding_box=bbox)
ad= ds.all_data()

Let's make a projection plot to look at the entire volume

In [3]:
px = yt.ProjectionPlot(ds, 'x', ('gas', 'density'))

Let's print some quantities about the domain, as well as the physical properties of the simulation

In [4]:
print ('left edge: ',ds.domain_left_edge)
print ('right edge: ',ds.domain_right_edge)
print ('center: ',ds.domain_center)
left edge:  [-100000. -100000. -100000.] code_length
right edge:  [ 100000.  100000.  100000.] code_length
center:  [ 0.  0.  0.] code_length

We can also see the fields that are available to query in the dataset

In [5]:
[('PartType0', 'ArtificialViscosity'),
 ('PartType0', 'Coordinates'),
 ('PartType0', 'Density'),
 ('PartType0', 'ElectronAbundance'),
 ('PartType0', 'InternalEnergy'),
 ('PartType0', 'Masses'),
 ('PartType0', 'Metallicity_00'),
 ('PartType0', 'Metallicity_01'),
 ('PartType0', 'Metallicity_02'),
 ('PartType0', 'Metallicity_03'),
 ('PartType0', 'Metallicity_04'),
 ('PartType0', 'Metallicity_05'),
 ('PartType0', 'Metallicity_06'),
 ('PartType0', 'Metallicity_07'),
 ('PartType0', 'Metallicity_08'),
 ('PartType0', 'Metallicity_09'),
 ('PartType0', 'Metallicity_10'),
 ('PartType0', 'Metallicity_11'),
 ('PartType0', 'NeutralHydrogenAbundance'),
 ('PartType0', 'ParticleIDs'),
 ('PartType0', 'SmoothingLength'),
 ('PartType0', 'StarFormationRate'),
 ('PartType0', 'Velocities'),
 ('PartType1', 'Coordinates'),
 ('PartType1', 'Masses'),
 ('PartType1', 'ParticleIDs'),
 ('PartType1', 'Velocities'),
 ('PartType2', 'Coordinates'),
 ('PartType2', 'Masses'),
 ('PartType2', 'ParticleIDs'),
 ('PartType2', 'Velocities'),
 ('PartType4', 'Coordinates'),
 ('PartType4', 'Masses'),
 ('PartType4', 'Metallicity_00'),
 ('PartType4', 'Metallicity_01'),
 ('PartType4', 'Metallicity_02'),
 ('PartType4', 'Metallicity_03'),
 ('PartType4', 'Metallicity_04'),
 ('PartType4', 'Metallicity_05'),
 ('PartType4', 'Metallicity_06'),
 ('PartType4', 'Metallicity_07'),
 ('PartType4', 'Metallicity_08'),
 ('PartType4', 'Metallicity_09'),
 ('PartType4', 'Metallicity_10'),
 ('PartType4', 'Metallicity_11'),
 ('PartType4', 'ParticleIDs'),
 ('PartType4', 'StellarFormationTime'),
 ('PartType4', 'Velocities'),
 ('PartType5', 'BH_AccreationLength'),
 ('PartType5', 'BH_Mass'),
 ('PartType5', 'BH_Mass_AlphaDisk'),
 ('PartType5', 'BH_Mdot'),
 ('PartType5', 'Coordinates'),
 ('PartType5', 'Masses'),
 ('PartType5', 'ParticleIDs'),
 ('PartType5', 'StellarFormationTime'),
 ('PartType5', 'Velocities'),
 ('all', 'Coordinates'),
 ('all', 'Masses'),
 ('all', 'ParticleIDs'),
 ('all', 'Velocities')]

Let's create a data object that represents the full simulation domain, and find the total mass in gas and dark matter particles contained in it:

In [6]:
ad = ds.all_data()

# total_mass returns a list, representing the total gas and dark matter + stellar mass, respectively
print ([tm.in_units('Msun') for tm in ad.quantities.total_mass()])
[19136499117833.203 Msun, 2.900464323595066e+16 Msun]

Now let's say we want to zoom in on the box (since clearly the bounding we chose initially is much larger than the volume containing the gas particles!), and center on wherever the highest gas density peak is. First, let's find this peak:

In [7]:
density = ad[("PartType0","density")]
wdens = np.where(density == np.max(density))
coordinates = ad[("PartType0","Coordinates")]
center = coordinates[wdens][0]
print ('center = ',center)
center =  [ 31995.63476562  31473.6640625   28969.88671875] code_length

Set up the box to zoom into

In [8]:
new_box_size = ds.quan(250,'code_length')

left_edge = center - new_box_size/2
right_edge = center + new_box_size/2

print (new_box_size.in_units('Mpc'))
print (left_edge.in_units('Mpc'))
print (right_edge.in_units('Mpc'))
0.12315295332038367 Mpc
[ 15.69985118  15.44272225  14.20933195] Mpc
[ 15.82300414  15.5658752   14.3324849 ] Mpc
In [9]:
ad2= ds.region(center=center, left_edge=left_edge, right_edge=right_edge)

Using this new data object, let's confirm that we're only looking at a subset of the domain by first calculating thte total mass in gas and particles contained in the subvolume:

In [10]:
print ([tm.in_units('Msun') for tm in ad.quantities.total_mass()])
[19136499117833.203 Msun, 2.900464323595066e+16 Msun]

And then by visualizing what the new zoomed region looks like

In [11]:
px = yt.ProjectionPlot(ds, 'x', ('gas', 'density'), center=center, width=new_box_size)

Cool - there's a disk galaxy there!

(yt_gadget_analysis.ipynb; yt_gadget_analysis_evaluated.ipynb;